PhysHunter commited on
Commit
c056eba
·
1 Parent(s): 48c560e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -17
app.py CHANGED
@@ -2,9 +2,7 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,24 +10,20 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
@@ -41,9 +35,8 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
+ from transformers import VitsModel, VitsTokenizer, pipeline
 
 
6
 
7
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
8
 
 
10
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
11
 
12
  # load text-to-speech checkpoint and speaker embeddings
13
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
14
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-fra").to(device)
 
 
 
 
 
15
 
16
 
17
  def translate(audio):
18
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
19
  return outputs["text"]
20
 
21
 
22
  def synthesise(text):
23
+ inputs = tokenizer(text=text, return_tensors="pt")
24
+ outputs = model(inputs["input_ids"].to(device))
25
+ speech = outputs.audio[0]
26
+ return speech.detach().cpu()
27
 
28
 
29
  def speech_to_speech_translation(audio):
 
35
 
36
  title = "Cascaded STST"
37
  description = """
38
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
39
+ [MMS TTS](https://huggingface.co/facebook/mms-tts) model for text-to-speech:
 
40
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
41
  """
42