import gradio as gr import os import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer ## Model TOKEN = os.environ.get("accesstoken") tokenizer = AutoTokenizer.from_pretrained("PhongLT/ViLexNorm-bartpho-syllable-base-10e-nopre", token=TOKEN) model = AutoModelForSeq2SeqLM.from_pretrained("PhongLT/ViLexNorm-bartpho-syllable-base-10e-nopre", token=TOKEN) def normalize(input): input_ids = tokenizer( input, return_tensors="pt", max_length=128, padding="max_length", truncation= True).input_ids output_ids = model.generate(input_ids, max_length=128) return tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=128) # Create title, description and article strings title = "Vietnamese Lexical Normalization" description = "Nhập 1 câu cần chuẩn hoá" example_list = ["mình thấy hát cũm bth, nhìn hơi x ấ u nữa", "bạn ơi cho mk hỏi chút đc ko"] demo = gr.Interface(fn=normalize, inputs="text", outputs="text", examples=example_list, title=title, description=description) # Launch the demo! demo.launch()