import streamlit as st import pandas as pd import matplotlib.pyplot as plt # (Import other necessary libraries for visualization and Gemini API interaction) # Define Color Palette primary_color = "#3498db" # Example: Bright blue secondary_color = "#e74c3c" # Example: Vibrant red background_color = "#f0f0f0" # Example: Light gray text_color = "#2c3e50" # Example: Dark gray # Apply Styling st.markdown( f""" """, unsafe_allow_html=True, ) st.title("Event Management Financial Forecaster") # Sidebar gemini_api_key = st.sidebar.text_input("Google Gemini API Key") # Sliders for Revenue Variables st.sidebar.subheader("Revenue") ticket_sales = st.sidebar.slider("Ticket Sales", 0, 100000, 50000) # (Add sliders for other revenue variables) # Sliders for Expense Variables st.sidebar.subheader("Expenses") venue_rental = st.sidebar.slider("Venue Rental", 0, 50000, 25000) # (Add sliders for other expense variables) # Calculate Financial Metrics # (Implement the logic to calculate P&L, cash flow, sensitivity, KPIs based on slider values) # Main Area st.subheader("Projected P&L Statement") # Visualization Styling for P&L fig_pl, ax_pl = plt.subplots() # ... (plot P&L data) ax_pl.set_facecolor(background_color) plt.grid(color="white", linestyle="--", linewidth=0.5) # ... (other plot customizations) st.pyplot(fig_pl) st.subheader("Cash Flow Forecast") # Visualization Styling for Cash Flow fig_cf, ax_cf = plt.subplots() # ... (plot cash flow data) ax_cf.set_facecolor(background_color) plt.grid(color="white", linestyle="--", linewidth=0.5) # ... (other plot customizations) st.pyplot(fig_cf) # (Add other visualizations for sensitivity analysis and KPIs with similar styling) # Optional: AI-Powered Insights (using Gemini API) if gemini_api_key: st.subheader("AI-Powered Insights") # (Integrate Gemini API to generate analysis and scenario simulations based on input data)