ChatbotLangchain / pipeline.py
Phoenix21's picture
Update pipeline.py
d71a43c verified
raw
history blame contribute delete
32 kB
import os
import logging
import re
import time
import gc
from datetime import datetime
from typing import Optional, List, Dict, Any
from collections import OrderedDict
import pandas as pd
from pydantic import BaseModel, Field, ValidationError, validator
# NLTK for input validation
import nltk
from nltk.corpus import words
try:
english_words = set(words.words())
except LookupError:
nltk.download('words')
english_words = set(words.words())
# LangChain / Groq / LLM imports
from langchain_groq import ChatGroq
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA, LLMChain
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
from langchain_core.caches import BaseCache
from langchain_core.callbacks import Callbacks
# from langchain_core.callbacks import CallbackManager
# from langchain.callbacks.base import BaseCallbacks # Updated import
# from langchain.callbacks.manager import CallbackManager
# from langchain.callbacks import StdOutCallbackHandler
# Custom chain imports
# from groq_client import GroqClient
from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain
from tailor_chain_wellnessBrand import get_tailor_chain_wellnessBrand
# Mistral moderation
from mistralai import Mistral
# Google Gemini LLM
# from langchain_google_genai import ChatGoogleGenerativeAI
# Web search
# from smolagents import DuckDuckGoSearchTool, ManagedAgent, HfApiModel, CodeAgent
# from openinference.instrumentation.smolagents import SmolagentsInstrumentor
# from phoenix.otel import register
# register()
# SmolagentsInstrumentor().instrument(skip_dep_check=True)
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
HfApiModel,
ToolCallingAgent,
VisitWebpageTool,
)
# Import new prompts
from prompts import (
selfharm_prompt, frustration_prompt, ethical_conflict_prompt,
classification_prompt, refusal_prompt, tailor_prompt, cleaner_prompt
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from langchain_core.tracers import LangChainTracer
from langsmith import Client
os.environ["LANGCHAIN_TRACING_V2"]="true"
os.environ["LANGSMITH_ENDPOINT"]="https://api.smith.langchain.com"
# langsmith_client = Client()
os.environ["LANGCHAIN_API_KEY"]=os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"]=os.getenv("LANGCHAIN_PROJECT")
# tracer = LangChainTracer(project_name=os.environ.get("LANGCHAIN_PROJECT", "healthy_ai_expert"))
# -------------------------------------------------------
# Basic Models
# -------------------------------------------------------
class QueryInput(BaseModel):
query: str = Field(..., min_length=1)
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string")
if not v.strip():
raise ValueError("Query cannot be empty or whitespace")
return v.strip()
class ProcessingMetrics(BaseModel):
total_requests: int = 0
cache_hits: int = 0
errors: int = 0
average_response_time: float = 0.0
last_reset: Optional[datetime] = None
def update_metrics(self, processing_time: float, is_cache_hit: bool = False):
self.total_requests += 1
if is_cache_hit:
self.cache_hits += 1
self.average_response_time = (
(self.average_response_time * (self.total_requests - 1) + processing_time)
/ self.total_requests
)
# -------------------------------------------------------
# Mistral Moderation
# -------------------------------------------------------
class ModerationResult(BaseModel):
is_safe: bool
categories: Dict[str, bool]
original_text: str
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
def moderate_text(query: str) -> ModerationResult:
"""
Uses Mistral's moderation to detect unsafe content.
"""
try:
query_input = QueryInput(query=query)
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query_input.query}]
)
is_safe = True
categories = {}
if hasattr(response, 'results') and response.results:
cats = response.results[0].categories
categories = {
"violence": cats.get("violence_and_threats", False),
"hate": cats.get("hate_and_discrimination", False),
"dangerous": cats.get("dangerous_and_criminal_content", False),
"selfharm": cats.get("selfharm", False)
}
is_safe = not any(categories.values())
return ModerationResult(
is_safe=is_safe,
categories=categories,
original_text=query_input.query
)
except ValidationError as ve:
raise ValueError(f"Moderation input validation failed: {ve}")
except Exception as e:
raise RuntimeError(f"Moderation failed: {e}")
def compute_moderation_severity(mresult: ModerationResult) -> float:
severity = 0.0
for flag in mresult.categories.values():
if flag:
severity += 0.3
return min(severity, 1.0)
# -------------------------------------------------------
# Models
# -------------------------------------------------------
GROQ_MODELS = {
"default": "llama3-70b-8192",
"classification": "qwen-qwq-32b",
"moderation": "mistral-moderation-latest",
"combination": "llama-3.3-70b-versatile"
}
MAX_RETRIES = 3
RATE_LIMIT_REQUESTS = 60
CACHE_SIZE_LIMIT = 1000
# Google Gemini (primary)
# GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
# gemini_llm = ChatGoogleGenerativeAI(
# model="gemini-2.0-flash",
# temperature=0.5,
# max_tokens=None,
# timeout=None,
# max_retries=2,
# )
# # Fallback
# fallback_groq_api_key = os.environ.get("GROQ_API_KEY_FALLBACK", "GROQ_API_KEY")
# # Attempt to initialize ChatGroq without a cache
# try:
# groq_fallback_llm = ChatGroq(
# model=GROQ_MODELS["default"],
# temperature=0.7,
# # groq_api_key=fallback_groq_api_key,
# max_tokens=2048
# )
# except Exception as e:
# logger.error(f"Failed to initialize ChatGroq: {e}")
# raise RuntimeError("ChatGroq initialization failed.") from e
# Define a simple no-op cache class
class NoCache(BaseCache):
"""Simple no-op cache implementation."""
def __init__(self):
pass
def lookup(self, prompt, llm_string):
return None
def update(self, prompt, llm_string, return_val):
pass
def clear(self):
pass
# Rebuild the ChatGroq model after defining NoCache
ChatGroq.model_rebuild()
# Initialize ChatGroq with cache
try:
fallback_groq_api_key = os.environ.get("GROQ_API_KEY_FALLBACK", os.environ.get("GROQ_API_KEY"))
if not fallback_groq_api_key:
logger.warning("No Groq API key found for fallback LLM")
groq_fallback_llm = ChatGroq(
model=GROQ_MODELS["default"], # Replace with your actual model name if different
temperature=0.7,
groq_api_key=fallback_groq_api_key,
max_tokens=2048,
cache=NoCache(), # Set cache explicitly
callbacks=[] # Explicitly set callbacks to an empty list
)
except Exception as e:
logger.error(f"Failed to initialize fallback Groq LLM: {e}")
raise RuntimeError("ChatGroq initialization failed.") from e
# -------------------------------------------------------
# Rate-limit & Cache
# -------------------------------------------------------
def handle_rate_limiting(state: "PipelineState") -> bool:
current_time = time.time()
one_min_ago = current_time - 60
state.request_timestamps = [t for t in state.request_timestamps if t > one_min_ago]
if len(state.request_timestamps) >= RATE_LIMIT_REQUESTS:
return False
state.request_timestamps.append(current_time)
return True
def manage_cache(state: "PipelineState", query: str, response: str = None) -> Optional[str]:
cache_key = query.strip().lower()
if response is None:
return state.cache.get(cache_key)
if cache_key in state.cache:
state.cache.move_to_end(cache_key)
state.cache[cache_key] = response
if len(state.cache) > CACHE_SIZE_LIMIT:
state.cache.popitem(last=False)
return None
def create_error_response(error_type: str, details: str = "") -> str:
templates = {
"validation": "I couldn't process your query: {details}",
"processing": "I encountered an error while processing: {details}",
"rate_limit": "Too many requests. Please try again soon.",
"general": "Apologies, but something went wrong."
}
return templates.get(error_type, templates["general"]).format(details=details)
# -------------------------------------------------------
# Web Search
# -------------------------------------------------------
web_search_cache: Dict[str, str] = {}
def store_websearch_result(query: str, result: str):
web_search_cache[query.strip().lower()] = result
def retrieve_websearch_result(query: str) -> Optional[str]:
return web_search_cache.get(query.strip().lower())
def do_web_search(query: str) -> str:
try:
cached = retrieve_websearch_result(query)
if cached:
logger.info("Using cached web search result.")
return cached
logger.info("Performing a new web search for: '%s'", query)
# model = HfApiModel()
# search_tool = DuckDuckGoSearchTool()
# web_agent = CodeAgent(tools=[search_tool], model=model)
# managed_web_agent = ManagedAgent(
# agent=web_agent,
# name="web_search",
# description="Runs a web search. Provide your query."
# )
search_agent = ToolCallingAgent(
tools=[DuckDuckGoSearchTool(), VisitWebpageTool()],
model=HfApiModel(),
name="search_agent",
description="This is an agent that can do web search.",
)
manager_agent = CodeAgent(
tools=[],
model=model,
managed_agents=[managed_web_agent]
)
new_search_result = manager_agent.run(f"Search for information about: {query}")
store_websearch_result(query, new_search_result)
return str(new_search_result).strip()
except Exception as e:
logger.error(f"Web search failed: {e}")
return ""
def is_greeting(query: str) -> bool:
"""
Returns True if the query is a greeting. This check is designed to be
lenient enough to catch common greetings even with minor spelling mistakes
or punctuation.
"""
# Define a set of common greeting words (you can add variants or use fuzzy matching if needed)
greetings = {"hello", "hi", "hey", "hii", "hola", "greetings"}
# Remove punctuation and extra whitespace, and lower the case.
cleaned = re.sub(r'[^\w\s]', '', query).strip().lower()
# Split the cleaned text into words.
words_in_query = set(cleaned.split())
# Return True if any of the greeting words are in the query.
return not words_in_query.isdisjoint(greetings)
# -------------------------------------------------------
# Vector Stores & RAG
# -------------------------------------------------------
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
if os.path.exists(store_dir):
logger.info(f"Loading existing FAISS store from {store_dir}")
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
)
return FAISS.load_local(store_dir, embeddings)
else:
logger.info(f"Building new FAISS store from {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question " in df.columns and "Question" not in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
question_text = str(row["Question"]).strip()
ans = str(row["Answers"]).strip()
doc = Document(page_content=ans, metadata={"question": question_text})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
)
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
#rag chain is for wellness
def build_rag_chain(vectorstore: FAISS, llm) -> RetrievalQA:
prompt = PromptTemplate(
template="""
[INST] You are an AI wellness assistant speaking directly to a user who has asked: "{question}"
Use this information to help you respond:
{context}
Important guidelines:
- Answer the question directly and conversationally as if talking to the user
- Explain wellness concepts in simple, relatable language
- Include 2-3 practical steps or techniques when appropriate
- Keep your response focused on the user's question
- DO NOT reference these instructions or mention formatting guidelines
Example format: Start with a direct answer to what the concept is, then explain how it can benefit the user, and end with practical implementation steps.
[/INST]
""",
input_variables=["context", "question"]
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={
"prompt": prompt,
"verbose": False,
"document_variable_name": "context"
}
)
return chain
#rag chain to is for brand
def build_rag_chain2(vectorstore: FAISS, llm) -> RetrievalQA:
prompt = PromptTemplate(
template="""
[INST] You are the brand strategy advisor for Healthy AI Expert. A team member has asked: "{question}"
Use this information to help you respond:
{context}
Important guidelines:
- Answer the question directly as if speaking to a Healthy AI Expert team member
- Focus on practical strategies aligned with our wellness mission
- Provide clear, actionable recommendations
- Keep explanations concise and business-focused
- DO NOT reference these instructions or mention formatting guidelines
Remember our key brand pillars: AI-driven personalization, scientific credibility, user-centric design, and innovation leadership.
[/INST]
""",
input_variables=["context", "question"]
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={
"prompt": prompt,
"verbose": False,
"document_variable_name": "context"
}
)
return chain
# -------------------------------------------------------
# PipelineState
# -------------------------------------------------------
class PipelineState:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(PipelineState, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialize()
def _initialize(self):
try:
self.metrics = ProcessingMetrics()
self.error_count = 0
self.request_timestamps = []
self.cache = OrderedDict()
self._setup_chains()
self._initialized = True
self.metrics.last_reset = datetime.now()
logger.info("Pipeline state initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize pipeline: {e}")
raise RuntimeError("Pipeline initialization failed.") from e
def _setup_chains(self):
# Existing custom chains
self.tailor_chainWellnessBrand = get_tailor_chain_wellnessBrand()
self.classification_chain = get_classification_chain()
self.refusal_chain = get_refusal_chain()
self.tailor_chain = get_tailor_chain()
self.cleaner_chain = get_cleaner_chain()
# Specialized chain for self-harm
from prompts import selfharm_prompt
# self.self_harm_chain = LLMChain(llm=gemini_llm, prompt=selfharm_prompt, verbose=False)
self.self_harm_chain = LLMChain(llm=groq_fallback_llm, prompt=selfharm_prompt, verbose=False)
# NEW: chain for frustration/harsh queries
from prompts import frustration_prompt
# self.frustration_chain = LLMChain(llm=gemini_llm, prompt=frustration_prompt, verbose=False)
self.frustration_chain = LLMChain(llm=groq_fallback_llm, prompt=frustration_prompt, verbose=False)
# NEW: chain for ethical conflict queries
from prompts import ethical_conflict_prompt
# self.ethical_conflict_chain = LLMChain(llm=gemini_llm, prompt=ethical_conflict_prompt, verbose=False)
self.ethical_conflict_chain = LLMChain(llm=groq_fallback_llm, prompt=ethical_conflict_prompt, verbose=False)
# Build brand & wellness vectorstores
brand_csv = "BrandAI.csv"
brand_store = "faiss_brand_store"
wellness_csv = "AIChatbot.csv"
wellness_store = "faiss_wellness_store"
brand_vs = build_or_load_vectorstore(brand_csv, brand_store)
wellness_vs = build_or_load_vectorstore(wellness_csv, wellness_store)
# Default LLM & fallback
# self.gemini_llm = gemini_llm
self.groq_fallback_llm = groq_fallback_llm
# self.brand_rag_chain = build_rag_chain2(brand_vs, self.gemini_llm)
# self.wellness_rag_chain = build_rag_chain(wellness_vs, self.gemini_llm)
self.brand_rag_chain = build_rag_chain2(brand_vs, self.groq_fallback_llm)
self.wellness_rag_chain = build_rag_chain(wellness_vs, self.groq_fallback_llm)
# self.brand_rag_chain_fallback = build_rag_chain2(brand_vs, self.groq_fallback_llm)
# self.wellness_rag_chain_fallback = build_rag_chain(wellness_vs, self.groq_fallback_llm)
def handle_error(self, error: Exception) -> bool:
self.error_count += 1
self.metrics.errors += 1
if self.error_count >= MAX_RETRIES:
logger.warning("Max error reached, resetting pipeline.")
self.reset()
return False
return True
def reset(self):
try:
logger.info("Resetting pipeline state.")
old_metrics = self.metrics
self._initialized = False
self.__init__()
self.metrics = old_metrics
self.metrics.last_reset = datetime.now()
self.error_count = 0
gc.collect()
logger.info("Pipeline state reset done.")
except Exception as e:
logger.error(f"Reset pipeline failed: {e}")
raise RuntimeError("Failed to reset pipeline.")
def get_metrics(self) -> Dict[str, Any]:
uptime = (datetime.now() - self.metrics.last_reset).total_seconds() / 3600
return {
"total_requests": self.metrics.total_requests,
"cache_hits": self.metrics.cache_hits,
"error_rate": self.metrics.errors / max(self.metrics.total_requests, 1),
"average_response_time": self.metrics.average_response_time,
"uptime_hours": uptime
}
def update_metrics(self, start_time: float, is_cache_hit: bool = False):
duration = time.time() - start_time
self.metrics.update_metrics(duration, is_cache_hit)
pipeline_state = PipelineState()
# -------------------------------------------------------
# Helper checks: detect aggression or ethical conflict
# -------------------------------------------------------
def is_aggressive_or_harsh(query: str) -> bool:
"""
Very naive check: If user is insulting AI, complaining about worthless answers, etc.
You can refine with better logic or a small LLM classifier.
"""
triggers = ["useless", "worthless", "you cannot do anything", "so bad at answering"]
for t in triggers:
if t in query.lower():
return True
return False
def is_ethical_conflict(query: str) -> bool:
"""
Check if user is asking about lying, revenge, or other moral dilemmas.
You can expand or refine as needed.
"""
ethics_keywords = ["should i lie", "should i cheat", "revenge", "get back at", "hurt them back"]
q_lower = query.lower()
return any(k in q_lower for k in ethics_keywords)
# -------------------------------------------------------
# Main Pipeline
# -------------------------------------------------------
def run_with_chain(query: str) -> str:
"""
Overall flow:
1) Validate & rate-limit
2) Mistral moderation =>
- If self-harm => self_harm_chain
- If hate => refusal
- If violence/dangerous => we STILL produce a guided response (ethics) unless it's extreme
3) If not refused, check if query is aggression/ethical => route to chain
4) Otherwise classify => brand/wellness/out-of-scope => RAG => tailor
"""
# with tracer.new_trace(name="wellness_pipeline_run") as run:
start_time = time.time()
try:
# 1) Validate
if not query or query.strip() == "":
return create_error_response("validation", "Empty query.")
if len(query.strip()) < 2:
return create_error_response("validation", "Too short.")
words_in_text = re.findall(r'\b\w+\b', query.lower())
if not any(w in english_words for w in words_in_text):
return create_error_response("validation", "Unclear words.")
if len(query) > 500:
return create_error_response("validation", "Too long (>500).")
if not handle_rate_limiting(pipeline_state):
return create_error_response("rate_limit")
# New: Check if the query is a greeting
if is_greeting(query):
greeting_response = "Hello there!! Welcome to Healthy AI Expert, How may I assist you today?"
manage_cache(pipeline_state, query, greeting_response)
pipeline_state.update_metrics(start_time)
return greeting_response
if not handle_rate_limiting(pipeline_state):
return create_error_response("rate_limit")
# Cache check
cached = manage_cache(pipeline_state, query)
if cached:
pipeline_state.update_metrics(start_time, is_cache_hit=True)
return cached
# 2) Mistral moderation
try:
mod_res = moderate_text(query)
severity = compute_moderation_severity(mod_res)
# If self-harm => supportive
if mod_res.categories.get("selfharm", False):
logger.info("Self-harm flagged => providing supportive chain response.")
selfharm_resp = pipeline_state.self_harm_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": selfharm_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
# If hate => refuse
if mod_res.categories.get("hate", False):
logger.info("Hate content => refusal.")
refusal_resp = pipeline_state.refusal_chain.run({"topic": "moderation_flagged"})
manage_cache(pipeline_state, query, refusal_resp)
pipeline_state.update_metrics(start_time)
return refusal_resp
# If "dangerous" or "violence" is flagged, we might still want to
# provide a "non-violent advice" approach (like revenge queries).
# So we won't automatically refuse. We'll rely on the
# is_ethical_conflict() check below.
except Exception as e:
logger.error(f"Moderation error: {e}")
severity = 0.0
# 3) Check for aggression or ethical conflict
if is_aggressive_or_harsh(query):
logger.info("Detected harsh/aggressive language => frustration_chain.")
frustration_resp = pipeline_state.frustration_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": frustration_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
if is_ethical_conflict(query):
logger.info("Detected ethical dilemma => ethical_conflict_chain.")
ethical_resp = pipeline_state.ethical_conflict_chain.run({"query": query})
final_tailored = pipeline_state.tailor_chain.run({"response": ethical_resp}).strip()
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
# 4) Standard path: classification => brand/wellness/out-of-scope
try:
class_out = pipeline_state.classification_chain.run({"query": query})
classification = class_out.strip().lower()
except Exception as e:
logger.error(f"Classification error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Classification error.")
return create_error_response("processing")
if classification in ["outofscope", "out_of_scope"]:
try:
# Politely refuse if truly out-of-scope
refusal_text = pipeline_state.refusal_chain.run({"topic": query})
tailored_refusal = pipeline_state.tailor_chain.run({"response": refusal_text}).strip()
manage_cache(pipeline_state, query, tailored_refusal)
pipeline_state.update_metrics(start_time)
return tailored_refusal
except Exception as e:
logger.error(f"Refusal chain error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Refusal error.")
return create_error_response("processing")
# brand vs wellness
if classification == "brand":
rag_chain_main = pipeline_state.brand_rag_chain
# rag_chain_fallback = pipeline_state.brand_rag_chain_fallback
else:
rag_chain_main = pipeline_state.wellness_rag_chain
# rag_chain_fallback = pipeline_state.wellness_rag_chain_fallback
# RAG with fallback
try:
try:
rag_output = rag_chain_main({"query": query})
except Exception as e_main:
if "resource exhausted" in str(e_main).lower():
logger.warning("Gemini resource exhausted. Falling back to Groq.")
# rag_output = rag_chain_fallback({"query": query})
else:
raise
if isinstance(rag_output, dict) and "result" in rag_output:
csv_ans = rag_output["result"].strip()
else:
csv_ans = str(rag_output).strip()
# If not enough => web
if "not enough context" in csv_ans.lower() or len(csv_ans) < 40:
logger.info("Insufficient RAG => web search.")
web_info = do_web_search(query)
if web_info:
csv_ans += f"\n\nAdditional info:\n{web_info}"
except Exception as e:
logger.error(f"RAG error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "RAG error.")
return create_error_response("processing")
# Tailor final
try:
final_tailored = pipeline_state.tailor_chainWellnessBrand.run({"response": csv_ans}).strip()
if severity > 0.5:
final_tailored += "\n\n(Please note: This may involve sensitive content.)"
manage_cache(pipeline_state, query, final_tailored)
pipeline_state.update_metrics(start_time)
return final_tailored
except Exception as e:
logger.error(f"Tailor chain error: {e}")
if not pipeline_state.handle_error(e):
return create_error_response("processing", "Tailoring error.")
return create_error_response("processing")
except Exception as e:
logger.error(f"Critical error in run_with_chain: {e}")
pipeline_state.metrics.errors += 1
return create_error_response("general")
# -------------------------------------------------------
# Health & Utility
# -------------------------------------------------------
# def reset_pipeline():
# try:
# pipeline_state.reset()
# return {"status": "success", "message": "Pipeline reset successful"}
# except Exception as e:
# logger.error(f"Reset pipeline error: {e}")
# return {"status": "error", "message": str(e)}
# def get_pipeline_health() -> Dict[str, Any]:
# try:
# stats = pipeline_state.get_metrics()
# healthy = stats["error_rate"] < 0.1
# return {
# **stats,
# "is_healthy": healthy,
# "status": "healthy" if healthy else "degraded"
# }
# except Exception as e:
# logger.error(f"Health check error: {e}")
# return {"is_healthy": False, "status": "error", "error": str(e)}
# def health_check() -> Dict[str, Any]:
# try:
# _ = run_with_chain("Test query for pipeline health check.")
# return {
# "status": "ok",
# "timestamp": datetime.now().isoformat(),
# "metrics": get_pipeline_health()
# }
# except Exception as e:
# return {
# "status": "error",
# "timestamp": datetime.now().isoformat(),
# "error": str(e)
# }
logger.info("Pipeline initialization complete!")