import gradio as gr import torch import pandas as pd from transformers import T5ForConditionalGeneration, T5Tokenizer import io # Load the pre-trained T5 model for paraphrasing model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') tokenizer = T5Tokenizer.from_pretrained('t5-base') def generate_paraphrases(text, num_return_sequences=5, num_beams=10): input_text = "paraphrase: " + text + " " encoding = tokenizer.encode_plus(input_text, return_tensors="pt") input_ids = encoding["input_ids"] outputs = model.generate( input_ids, max_length=256, num_beams=num_beams, num_return_sequences=num_return_sequences, no_repeat_ngram_size=2, early_stopping=True ) paraphrases = [ tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) for output in outputs ] return paraphrases def generate_and_export(text): paraphrases = generate_paraphrases(text) df = pd.DataFrame({ "Original": [text] * len(paraphrases), "Perspective": paraphrases }) csv_buffer = io.StringIO() df.to_csv(csv_buffer, index=False) csv_bytes = csv_buffer.getvalue().encode() return paraphrases, csv_bytes def gradio_generate(text): paraphrases, csv_bytes = generate_and_export(text) output_text = "\n\n".join(f"Perspective {i+1}: {p}" for i, p in enumerate(paraphrases)) return output_text, (csv_bytes, "generated_perspectives.csv") iface = gr.Interface( fn=gradio_generate, inputs=gr.Textbox(lines=5, placeholder="Enter text here..."), outputs=[ gr.Textbox(label="Generated Perspectives"), gr.File(label="Download CSV") ], title="Paraphrase Perspective Generator", description="Enter any text and generate alternative perspectives (paraphrases). Download the results as a CSV file." ) iface.launch()