Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import pandas as pd | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import io | |
# Load the pre-trained T5 model for paraphrasing | |
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') | |
tokenizer = T5Tokenizer.from_pretrained('t5-base') | |
def generate_paraphrases(text, num_return_sequences=5, num_beams=10): | |
input_text = "paraphrase: " + text + " </s>" | |
encoding = tokenizer.encode_plus(input_text, return_tensors="pt") | |
input_ids = encoding["input_ids"] | |
outputs = model.generate( | |
input_ids, | |
max_length=256, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
paraphrases = [ | |
tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
for output in outputs | |
] | |
return paraphrases | |
def generate_and_export(text): | |
paraphrases = generate_paraphrases(text) | |
df = pd.DataFrame({ | |
"Original": [text] * len(paraphrases), | |
"Perspective": paraphrases | |
}) | |
csv_buffer = io.StringIO() | |
df.to_csv(csv_buffer, index=False) | |
csv_bytes = csv_buffer.getvalue().encode() | |
return paraphrases, csv_bytes | |
def gradio_generate(text): | |
paraphrases, csv_bytes = generate_and_export(text) | |
output_text = "\n\n".join(f"Perspective {i+1}: {p}" for i, p in enumerate(paraphrases)) | |
return output_text, (csv_bytes, "generated_perspectives.csv") | |
iface = gr.Interface( | |
fn=gradio_generate, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."), | |
outputs=[ | |
gr.Textbox(label="Generated Perspectives"), | |
gr.File(label="Download CSV") | |
], | |
title="Paraphrase Perspective Generator", | |
description="Enter any text and generate alternative perspectives (paraphrases). Download the results as a CSV file." | |
) | |
iface.launch() |