Phantom-0-0 commited on
Commit
379886f
·
verified ·
1 Parent(s): 1bc586a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -35
README.md CHANGED
@@ -1,35 +1,47 @@
1
- # Engagement Detection API
2
-
3
- A Flask-based API for detecting engagement levels from facial expressions using TensorFlow Lite.
4
-
5
- ## API Endpoints
6
-
7
- - `GET /`: Returns API information
8
- - `POST /predict`: Accepts an image file and returns engagement predictions
9
-
10
- ## Deployment
11
-
12
- 1. Clone this repository
13
- 2. Build Docker image: `docker build -t engagement-api .`
14
- 3. Run container: `docker run -p 7860:7860 engagement-api`
15
-
16
- ## Example Usage
17
-
18
- ```python
19
- import requests
20
-
21
- url = "https://your-huggingface-space-url.hf.space/predict"
22
- files = {'image': open('test.jpg', 'rb')}
23
- response = requests.post(url, files=files)
24
- print(response.json())
25
- ```
26
-
27
- ## Model Details
28
-
29
- - Model: Custom TensorFlow Lite model (`engagement_model_89.tflite`)
30
- - Input: 224x224 RGB face image
31
- - Output: Probabilities for 4 engagement states:
32
- - Engaged
33
- - Frustrated
34
- - Bored
35
- - Confused
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: "Detect4Enhance Backend"
3
+ emoji: "🤖"
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: docker
7
+ sdk_version: "latest"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+
13
+ # Engagement Detection API
14
+
15
+ A Flask-based API for detecting engagement levels from facial expressions using TensorFlow Lite.
16
+
17
+ ## API Endpoints
18
+
19
+ - `GET /`: Returns API information
20
+ - `POST /predict`: Accepts an image file and returns engagement predictions
21
+
22
+ ## Deployment
23
+
24
+ 1. Clone this repository
25
+ 2. Build Docker image: `docker build -t engagement-api .`
26
+ 3. Run container: `docker run -p 7860:7860 engagement-api`
27
+
28
+ ## Example Usage
29
+
30
+ ```python
31
+ import requests
32
+
33
+ url = "https://your-huggingface-space-url.hf.space/predict"
34
+ files = {'image': open('test.jpg', 'rb')}
35
+ response = requests.post(url, files=files)
36
+ print(response.json())
37
+ ```
38
+
39
+ ## Model Details
40
+
41
+ - Model: Custom TensorFlow Lite model (`engagement_model_89.tflite`)
42
+ - Input: 224x224 RGB face image
43
+ - Output: Probabilities for 4 engagement states:
44
+ - Engaged
45
+ - Frustrated
46
+ - Bored
47
+ - Confused