Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
MODEL_PATH = "engagement_model_89.tflite"
|
8 |
+
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
|
9 |
+
interpreter.allocate_tensors()
|
10 |
+
input_details = interpreter.get_input_details()
|
11 |
+
output_details = interpreter.get_output_details()
|
12 |
+
|
13 |
+
def predict_tflite(input_data):
|
14 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
15 |
+
interpreter.invoke()
|
16 |
+
return interpreter.get_tensor(output_details[0]['index'])
|
17 |
+
|
18 |
+
# Labels
|
19 |
+
labels = ["Engaged", "Frustrated", "Bored", "Confused"]
|
20 |
+
|
21 |
+
# Haar Cascade for face detection
|
22 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
23 |
+
|
24 |
+
# Initialize Flask app
|
25 |
+
app = Flask(__name__)
|
26 |
+
|
27 |
+
@app.route('/')
|
28 |
+
def home():
|
29 |
+
return jsonify({
|
30 |
+
'message': 'Engagement Detection API',
|
31 |
+
'endpoints': {
|
32 |
+
'/predict': 'POST image for emotion prediction'
|
33 |
+
}
|
34 |
+
})
|
35 |
+
|
36 |
+
@app.route('/predict', methods=['POST'])
|
37 |
+
def predict():
|
38 |
+
file = request.files['image']
|
39 |
+
img = np.frombuffer(file.read(), np.uint8)
|
40 |
+
frame = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
41 |
+
|
42 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
43 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
44 |
+
|
45 |
+
predictions = {"Engaged": 0, "Frustrated": 0, "Bored": 0, "Confused": 0}
|
46 |
+
|
47 |
+
if len(faces) > 0:
|
48 |
+
for (x, y, w, h) in faces:
|
49 |
+
face = frame[y:y+h, x:x+w]
|
50 |
+
img_resized = cv2.resize(face, (224, 224))
|
51 |
+
img_resized = img_resized.astype("float32") / 255.0
|
52 |
+
img_resized = np.expand_dims(img_resized, axis=0)
|
53 |
+
|
54 |
+
# Get model predictions
|
55 |
+
preds = predict_tflite(img_resized)[0]
|
56 |
+
|
57 |
+
# Normalize to sum to 1 (100%)
|
58 |
+
preds = preds / np.sum(preds)
|
59 |
+
|
60 |
+
# Get dominant emotion
|
61 |
+
dominant_idx = np.argmax(preds)
|
62 |
+
dominant_emotion = labels[dominant_idx]
|
63 |
+
|
64 |
+
# Debug output
|
65 |
+
print(f"Model predictions: {dict(zip(labels, preds))}")
|
66 |
+
print(f"Dominant emotion: {dominant_emotion}")
|
67 |
+
|
68 |
+
# Store results
|
69 |
+
for i, label in enumerate(labels):
|
70 |
+
predictions[label] = float(preds[i])
|
71 |
+
result = dominant_emotion
|
72 |
+
|
73 |
+
if len(faces) == 0:
|
74 |
+
return jsonify({"error": "No face detected", "predictions": None, "result": None})
|
75 |
+
return jsonify({"predictions": predictions, "result": dominant_emotion})
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
import os
|
79 |
+
port = int(os.environ.get("PORT", 5000)) # Default to 5000 if not set
|
80 |
+
app.run(host='0.0.0.0', port=port, debug=True)
|