PawanratRung commited on
Commit
6040a96
·
verified ·
1 Parent(s): 5ac1af8

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +245 -0
app.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ import spaces
4
+
5
+ import gradio as gr
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ import onnxruntime
9
+ import torch
10
+ import torchvision.transforms.functional as F
11
+ from huggingface_hub import hf_hub_download
12
+ from PIL import Image, ImageColor
13
+ from torchvision.io import read_image
14
+ from torchvision.models.detection import MaskRCNN_ResNet50_FPN_Weights
15
+ from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks
16
+
17
+ # Load pre-trained model transformations.
18
+ weights = MaskRCNN_ResNet50_FPN_Weights.DEFAULT
19
+ transforms = weights.transforms()
20
+
21
+
22
+ def fix_category_id(cat_ids: list):
23
+ # Define the excluded category ids and the remaining ones
24
+ excluded_indices = {2, 12, 16, 19, 20}
25
+ remaining_categories = list(set(range(27)) - excluded_indices)
26
+
27
+ # Create a dictionary that maps new IDs to old(original) IDs
28
+ new_id_to_org_id = dict(zip(range(len(remaining_categories)), remaining_categories))
29
+
30
+ return [new_id_to_org_id[i-1]+1 for i in cat_ids]
31
+
32
+
33
+ def process_categories() -> tuple:
34
+ """
35
+ Load and process category information from a JSON file.
36
+ Returns a tuple containing two dictionaries: `category_id_to_name` maps category IDs to their names, and
37
+ `category_id_to_color` maps category IDs to a randomly sampled RGB color.
38
+
39
+ Returns:
40
+ tuple: A tuple containing two dictionaries:
41
+ - `category_id_to_name`: a dictionary mapping category IDs to their names.
42
+ - `category_id_to_color`: a dictionary mapping category IDs to a randomly sampled RGB color.
43
+ """
44
+ # Load raw categories from JSON file
45
+ with open("categories.json") as fp:
46
+ categories = json.load(fp)
47
+
48
+ # Map category IDs to names
49
+ category_id_to_name = {d["id"]: d["name"] for d in categories}
50
+
51
+ # Set the seed for the random sampling operation
52
+ random.seed(42)
53
+
54
+ # Get a list of all the color names in the PIL colormap
55
+ color_names = list(ImageColor.colormap.keys())
56
+
57
+ # Sample 46 unique colors from the list of color names
58
+ sampled_colors = random.sample(color_names, 46)
59
+
60
+ # Convert the color names to RGB values
61
+ rgb_colors = [ImageColor.getrgb(color_name) for color_name in sampled_colors]
62
+
63
+ # Map category IDs to colors
64
+ category_id_to_color = {
65
+ category["id"]: color for category, color in zip(categories, rgb_colors)
66
+ }
67
+
68
+ return category_id_to_name, category_id_to_color
69
+
70
+
71
+ def draw_predictions(
72
+ boxes, labels, scores, masks, img, model_name, score_threshold, proba_threshold
73
+ ):
74
+ """
75
+ Draw predictions on the input image based on the provided boxes, labels, scores, and masks. Only predictions
76
+ with scores above the `score_threshold` will be included, and masks with probabilities exceeding the
77
+ `proba_threshold` will be displayed.
78
+
79
+ Args:
80
+ - boxes: numpy.ndarray - an array of bounding box coordinates.
81
+ - labels: numpy.ndarray - an array of integers representing the predicted class for each bounding box.
82
+ - scores: numpy.ndarray - an array of confidence scores for each bounding box.
83
+ - masks: numpy.ndarray - an array of binary masks for each bounding box.
84
+ - img: PIL.Image.Image - the input image.
85
+ - model_name: str - name of the model given by the dropdown menu, either "facere" or "facere+".
86
+ - score_threshold: float - a confidence score threshold for filtering out low-scoring bbox predictions.
87
+ - proba_threshold: float - a threshold for filtering out low-probability (pixel-wise) mask predictions.
88
+
89
+ Returns:
90
+ - A list of strings, each representing the path to an image file containing the input image with a different
91
+ set of predictions drawn (masks, bounding boxes, masks with bounding box labels and scores).
92
+ """
93
+ imgs_list = []
94
+
95
+ # Map label IDs to names and colors
96
+ label_id_to_name, label_id_to_color = process_categories()
97
+
98
+ # Filter out predictions using thresholds
99
+ labels_id = labels[scores > score_threshold].tolist()
100
+ if model_name == "facere+":
101
+ labels_id = fix_category_id(labels_id)
102
+ # models output is in range: [1,class_id+1], hence re-map to: [0,class_id]
103
+ labels = [label_id_to_name[int(i) - 1] for i in labels_id]
104
+ masks = (masks[scores > score_threshold] > proba_threshold).astype(np.uint8)
105
+ boxes = boxes[scores > score_threshold]
106
+
107
+ # Draw masks to input image and save
108
+ img_masks = draw_segmentation_masks(
109
+ image=img,
110
+ masks=torch.from_numpy(masks.squeeze(1).astype(bool)),
111
+ alpha=0.9,
112
+ colors=[label_id_to_color[int(i) - 1] for i in labels_id],
113
+ )
114
+ img_masks = F.to_pil_image(img_masks)
115
+ img_masks.save("img_masks.png")
116
+ imgs_list.append("img_masks.png")
117
+
118
+ # Draw bboxes to input image and save
119
+ img_bbox = draw_bounding_boxes(img, boxes=torch.from_numpy(boxes), width=4)
120
+ img_bbox = F.to_pil_image(img_bbox)
121
+ img_bbox.save("img_bbox.png")
122
+ imgs_list.append("img_bbox.png")
123
+
124
+ # Save masks with their bbox labels & bbox scores
125
+ for col, (mask, label, score) in enumerate(zip(masks, labels, scores)):
126
+ mask = Image.fromarray(mask.squeeze())
127
+ plt.imshow(mask)
128
+ plt.axis("off")
129
+ plt.title(f"{label}: {score:.2f}", fontsize=9)
130
+ plt.savefig(f"mask-{col}.png")
131
+ plt.close()
132
+ imgs_list.append(f"mask-{col}.png")
133
+
134
+ return imgs_list
135
+
136
+
137
+ @spaces.GPU(duration=20)
138
+ def inference(image, model_name, mask_threshold, bbox_threshold):
139
+ """
140
+ Load the ONNX model and run inference with the provided input `image`. Visualize the predictions and save them in a
141
+ figure, which will be shown in the Gradio app.
142
+ """
143
+ # Load image.
144
+ img = read_image(image)
145
+ # Apply original transformation to the image.
146
+ img_transformed = transforms(img)
147
+
148
+ # Download model
149
+ path_onnx = hf_hub_download(
150
+ repo_id="rizavelioglu/fashionfail",
151
+ filename="facere_plus.onnx" if model_name == "facere+" else "facere_base.onnx"
152
+ )
153
+ # Session options (see https://github.com/microsoft/onnxruntime/issues/14694#issuecomment-1598429295)
154
+ sess_options = onnxruntime.SessionOptions()
155
+ sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
156
+ # Create an inference session.
157
+ ort_session = onnxruntime.InferenceSession(
158
+ path_onnx,
159
+ providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
160
+ sess_options=sess_options,
161
+ )
162
+
163
+ # compute ONNX Runtime output prediction
164
+ ort_inputs = {
165
+ ort_session.get_inputs()[0].name: img_transformed.unsqueeze(dim=0).numpy()
166
+ }
167
+ ort_outs = ort_session.run(None, ort_inputs)
168
+
169
+ boxes, labels, scores, masks = ort_outs
170
+ imgs_list = draw_predictions(boxes, labels, scores, masks, img, model_name,
171
+ score_threshold=bbox_threshold, proba_threshold=mask_threshold
172
+ )
173
+
174
+ return imgs_list
175
+
176
+
177
+ title = "Facere - Demo"
178
+ description = r"""This is the demo of the paper <a href="https://arxiv.org/abs/2404.08582">FashionFail: Addressing
179
+ Failure Cases in Fashion Object Detection and Segmentation</a>. <br>Upload your image and choose the model for inference
180
+ from the dropdown menu—either `Facere` or `Facere+` <br> Check out the <a
181
+ href="https://rizavelioglu.github.io/fashionfail/">project page</a> for more information."""
182
+ article = r"""
183
+ Example images are sampled from the `Fashionpedia-test` and `FashionFail-test` set, which the models did not see during training.
184
+
185
+ <br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and
186
+ a citation:
187
+ ```
188
+ @inproceedings{velioglu2024fashionfail,
189
+ author = {Velioglu, Riza and Chan, Robin and Hammer, Barbara},
190
+ title = {FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation},
191
+ journal = {IJCNN},
192
+ eprint = {2404.08582},
193
+ year = {2024},
194
+ }
195
+ ```
196
+ """
197
+
198
+ examples = [
199
+ ["examples/0a4f8205a3b58e70eec99fbbb9422d08.jpg", "facere", 0.5, 0.7],
200
+ ["examples/0a72e0f76ab9b75945f5d610508f9336.jpg", "facere", 0.5, 0.7],
201
+ ["examples/0a939e0e67011aecf7195c17ecb9733c.jpg", "facere", 0.5, 0.7],
202
+ ["examples/adi_9086_5.jpg", "facere", 0.5, 0.5],
203
+ ["examples/adi_9086_5.jpg", "facere+", 0.5, 0.5],
204
+ ["examples/adi_9704_1.jpg", "facere", 0.5, 0.5],
205
+ ["examples/adi_9704_1.jpg", "facere+", 0.5, 0.5],
206
+ ["examples/adi_10266_5.jpg", "facere", 0.5, 0.5],
207
+ ["examples/adi_10266_5.jpg", "facere+", 0.5, 0.5],
208
+ ["examples/adi_103_6.jpg", "facere", 0.5, 0.5],
209
+ ["examples/adi_103_6.jpg", "facere+", 0.5, 0.5],
210
+ ["examples/adi_1201_2.jpg", "facere", 0.5, 0.7],
211
+ ["examples/adi_1201_2.jpg", "facere+", 0.5, 0.7],
212
+ ["examples/adi_2149_5.jpg", "facere", 0.5, 0.7],
213
+ ["examples/adi_2149_5.jpg", "facere+", 0.5, 0.7],
214
+ ["examples/adi_5476_3.jpg", "facere", 0.5, 0.7],
215
+ ["examples/adi_5476_3.jpg", "facere+", 0.5, 0.7],
216
+ ["examples/adi_5641_4.jpg", "facere", 0.5, 0.7],
217
+ ["examples/adi_5641_4.jpg", "facere+", 0.5, 0.7]
218
+ ]
219
+
220
+ demo = gr.Interface(
221
+ fn=inference,
222
+ inputs=[
223
+ gr.Image(type="filepath", label="input"),
224
+ gr.Dropdown(["facere", "facere+"], value="facere", label="Models"),
225
+ gr.Slider(value=0.5, minimum=0.0, maximum=0.9, step=0.05, label="Mask threshold", info="a threshold for "
226
+ "filtering out "
227
+ "low-probability ("
228
+ "pixel-wise) mask "
229
+ "predictions"),
230
+ gr.Slider(value=0.7, minimum=0.0, maximum=0.9, step=0.05, label="BBox threshold", info="a threshold for "
231
+ "filtering out "
232
+ "low-scoring bbox "
233
+ "predictions")
234
+ ],
235
+ outputs=gr.Gallery(label="output", preview=True, height=500),
236
+ title=title,
237
+ description=description,
238
+ article=article,
239
+ examples=examples,
240
+ cache_examples=True,
241
+ examples_per_page=6
242
+ )
243
+
244
+ if __name__ == "__main__":
245
+ demo.launch()