Spaces:
Sleeping
Sleeping
Add Gradio app and requirements
Browse files- app.py +28 -0
- requires.txt +3 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
3 |
+
|
4 |
+
from transformers import pipeline
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the emotion detection model
|
8 |
+
emotion_classifier = pipeline("text-classification",
|
9 |
+
model="bhadresh-savani/distilbert-base-uncased-emotion")
|
10 |
+
|
11 |
+
# Define the emotion detection function
|
12 |
+
def detect_emotion(text):
|
13 |
+
result = emotion_classifier(text)
|
14 |
+
emotion = result[0]['label']
|
15 |
+
score = round(result[0]['score'], 3)
|
16 |
+
return f"Predicted Emotion: {emotion} (Confidence: {score})"
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=detect_emotion,
|
21 |
+
inputs=gr.Textbox(lines=3, placeholder="Type your sentence here..."),
|
22 |
+
outputs="text",
|
23 |
+
title="Emotion Detector",
|
24 |
+
description="Enter a sentence and let this AI detect the emotion behind it!"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch with public link
|
28 |
+
interface.launch(share=True)
|
requires.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|