Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,87 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain_pinecone import Pinecone
|
5 |
+
from langchain_openai import ChatOpenAI
|
6 |
+
from langchain_community.llms import HuggingFacePipeline
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, pipeline, AutoTokenizer
|
11 |
+
from huggingface_hub import login
|
12 |
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
15 |
+
login(token=os.environ.get('HF_KEY'))
|
|
|
16 |
|
17 |
+
# Initialize Embedding Model
|
18 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
19 |
|
20 |
+
# Pinecone Retriever
|
21 |
+
api_key = os.environ.get('PINCE_CONE_LIGHT')
|
22 |
+
if api_key is None:
|
23 |
+
raise ValueError("Pinecone API key missing.")
|
24 |
+
else:
|
25 |
+
pc = Pinecone(pinecone_api_key=api_key, embedding=embedding_model, index_name='rag-rubic', namespace='vectors_lightmodel')
|
26 |
+
retriever = pc.as_retriever()
|
|
|
|
|
27 |
|
28 |
+
# LLM Options
|
29 |
+
llm_options = {
|
30 |
+
"OpenAI": "gpt-4o-mini",
|
31 |
+
"Microsoft-Phi": "microsoft/Phi-3.5-mini-instruct",
|
32 |
+
"DeepSeek-R1": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
33 |
+
"Intel-tinybert": "Intel/dynamic_tinybert"
|
34 |
+
}
|
35 |
|
36 |
+
def load_llm(name, model_name):
|
37 |
+
"""Loads the selected LLM model only when needed."""
|
38 |
+
if name == "OpenAI":
|
39 |
+
openai_api_key = os.environ.get('OPEN_AI_KEY')
|
40 |
+
return ChatOpenAI(model='gpt-4o-mini', openai_api_key=openai_api_key)
|
41 |
+
|
42 |
+
if "Phi" in name or "DeepSeek" in name:
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
45 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=4096, eos_token_id=tokenizer.eos_token_id, return_full_text=False,
|
46 |
+
do_sample=False, num_return_sequences=1, max_new_tokens=50, temperature=0.1)
|
47 |
+
elif "tinybert" in name:
|
48 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
+
pipe = pipeline("feature-extraction", model=model, tokenizer=tokenizer, truncation=True, padding=True, max_length=512)
|
51 |
+
else:
|
52 |
+
return None
|
53 |
+
|
54 |
+
return HuggingFacePipeline(pipeline=pipe)
|
55 |
|
56 |
+
# Initialize default LLM
|
57 |
+
selected_llm = list(llm_options.keys())[0]
|
58 |
+
llm = load_llm(selected_llm, llm_options[selected_llm])
|
59 |
|
60 |
+
# Create QA Retrieval Chain
|
61 |
+
qa = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Chatbot function
|
64 |
+
def chatbot(selected_llm, user_input, chat_history):
|
65 |
+
global llm
|
66 |
+
if selected_llm != llm.model_name:
|
67 |
+
llm = load_llm(selected_llm, llm_options[selected_llm])
|
68 |
+
|
69 |
+
response = qa.invoke({"query": user_input})
|
70 |
+
answer = response.get("result", "No response received.")
|
71 |
+
chat_history.append(("π§βπ» You", user_input))
|
72 |
+
chat_history.append(("π€ Bot", answer))
|
73 |
+
return chat_history, ""
|
74 |
|
75 |
+
# Gradio Interface
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# π€ RAG-Powered Chatbot")
|
78 |
+
llm_selector = gr.Dropdown(choices=list(llm_options.keys()), value=selected_llm, label="Choose an LLM")
|
79 |
+
chat_history = gr.State([])
|
80 |
+
chatbot_ui = gr.Chatbot()
|
81 |
+
user_input = gr.Textbox(label="π¬ Type your message and press Enter:")
|
82 |
+
send_button = gr.Button("Send")
|
83 |
+
|
84 |
+
send_button.click(chatbot, inputs=[llm_selector, user_input, chat_history], outputs=[chatbot_ui, user_input])
|
85 |
+
user_input.submit(chatbot, inputs=[llm_selector, user_input, chat_history], outputs=[chatbot_ui, user_input])
|
86 |
|
87 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|