Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-Mi
|
|
32 |
# Initialize Pinecone connection
|
33 |
try:
|
34 |
pc = PineconeVectorStore(
|
35 |
-
pinecone_api_key=os.environ.get('
|
36 |
embedding=embedding_model,
|
37 |
index_name='rag-rubic',
|
38 |
namespace='vectors_lightmodel'
|
@@ -46,7 +46,7 @@ except Exception as e:
|
|
46 |
# Initialize the LLM
|
47 |
llm = ChatOpenAI(
|
48 |
model='gpt-4o-mini',
|
49 |
-
api_key=os.environ.get('
|
50 |
temperature=0.2
|
51 |
)
|
52 |
|
@@ -85,38 +85,9 @@ prompt = PromptTemplate(
|
|
85 |
rag_chain = prompt | llm | StrOutputParser()
|
86 |
|
87 |
# Web search tool for adding data from websites
|
88 |
-
web_search_tool = TavilySearchResults(api_key=os.environ.get('TAVILY_API_KEY'), k=
|
89 |
|
90 |
-
# Load website data
|
91 |
-
try:
|
92 |
-
print("Loading web data...")
|
93 |
-
docs = []
|
94 |
-
for i in url:
|
95 |
-
try:
|
96 |
-
docs.append(WebBaseLoader(i).load())
|
97 |
-
except Exception as e:
|
98 |
-
print(f"Error loading {i}: {e}")
|
99 |
-
|
100 |
-
docs_list = [item for sublist in docs for item in sublist]
|
101 |
|
102 |
-
# Split documents into chunks
|
103 |
-
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
|
104 |
-
chunk_size=1000,
|
105 |
-
chunk_overlap=100
|
106 |
-
)
|
107 |
-
doc_splits = text_splitter.split_documents(docs_list)
|
108 |
-
|
109 |
-
# VectorStore from the web-scraped documents
|
110 |
-
vectorstore = SKLearnVectorStore.from_documents(
|
111 |
-
documents=doc_splits,
|
112 |
-
embedding=embedding_model
|
113 |
-
)
|
114 |
-
retriever_web = vectorstore.as_retriever(search_kwargs={"k": 5})
|
115 |
-
print(f"Loaded {len(doc_splits)} document chunks from web sources")
|
116 |
-
except Exception as e:
|
117 |
-
print(f"Error in web data processing: {e}")
|
118 |
-
# Create a simple retriever that returns empty results if web loading fails
|
119 |
-
retriever_web = lambda x: []
|
120 |
|
121 |
# Define Graph states and transitions
|
122 |
class GraphState(TypedDict):
|
@@ -139,36 +110,24 @@ def retrieve_db(state):
|
|
139 |
return {'documents': [], 'question': question, 'need_web_search': 'yes'}
|
140 |
|
141 |
def grade_docs(state):
|
142 |
-
"""Grades the docs generated by the retriever_db
|
|
|
143 |
question = state['question']
|
144 |
docs = state['documents']
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
filtered_data = []
|
150 |
-
web_search_needed = "no"
|
151 |
-
|
152 |
-
try:
|
153 |
-
for doc in docs:
|
154 |
-
doc_content = doc.page_content if hasattr(doc, 'page_content') else str(doc)
|
155 |
-
score = retrieval_grader.invoke({'question': question, 'documents': doc_content})
|
156 |
-
grade = score.binary_score
|
157 |
-
if grade == 'yes':
|
158 |
-
filtered_data.append(doc)
|
159 |
-
except Exception as e:
|
160 |
-
print(f"Error in document grading: {e}")
|
161 |
-
web_search_needed = "yes"
|
162 |
-
|
163 |
-
# If no relevant documents were found, trigger web search
|
164 |
-
if not filtered_data:
|
165 |
-
web_search_needed = "yes"
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
'
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def decide(state):
|
174 |
"""Decide if the generation should be based on DB or web search DATA"""
|
@@ -179,58 +138,55 @@ def decide(state):
|
|
179 |
return 'generate'
|
180 |
|
181 |
def web_search(state):
|
182 |
-
"""
|
183 |
question = state['question']
|
184 |
-
documents = state
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
docs = retriever_web.invoke(question)
|
189 |
-
if not docs:
|
190 |
-
# If no results, try Tavily search
|
191 |
-
search_results = web_search_tool.invoke(question)
|
192 |
-
data = "\n".join(result["content"] for result in search_results)
|
193 |
-
docs = [Document(page_content=data)]
|
194 |
-
except Exception as e:
|
195 |
-
print(f"Web search error: {e}")
|
196 |
-
# Create a fallback document if search fails
|
197 |
-
docs = [Document(page_content="Unable to retrieve additional information.")]
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
def generate(state):
|
205 |
-
"
|
206 |
-
documents = state
|
207 |
question = state['question']
|
208 |
|
209 |
-
#
|
210 |
-
|
211 |
-
try:
|
212 |
-
context = "\n\n".join(
|
213 |
-
doc.page_content if hasattr(doc, 'page_content') else str(doc)
|
214 |
-
for doc in documents
|
215 |
-
)
|
216 |
-
except Exception as e:
|
217 |
-
print(f"Error processing documents: {e}")
|
218 |
-
context = "Error retrieving relevant information."
|
219 |
-
else:
|
220 |
-
context = "No relevant information found."
|
221 |
-
|
222 |
-
try:
|
223 |
-
response = rag_chain.invoke({'context': context, 'question': question})
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Generation error: {e}")
|
226 |
-
response = "I apologize, but I encountered an error while generating a response. Please try asking your question again."
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
return {
|
229 |
'documents': documents,
|
230 |
'question': question,
|
231 |
-
'generation': response
|
232 |
}
|
233 |
|
|
|
234 |
# Compile Workflow
|
235 |
workflow = StateGraph(GraphState)
|
236 |
workflow.add_node("retrieve", retrieve_db)
|
@@ -275,7 +231,7 @@ def process_query(user_input, history):
|
|
275 |
else:
|
276 |
response = "I couldn't find relevant information to answer your question."
|
277 |
except Exception as e:
|
278 |
-
print(f"Error in crag execution: {e}")
|
279 |
response = "I encountered an error while processing your request. Please try again."
|
280 |
|
281 |
# Update the last response in history
|
|
|
32 |
# Initialize Pinecone connection
|
33 |
try:
|
34 |
pc = PineconeVectorStore(
|
35 |
+
pinecone_api_key=os.environ.get('PINECONE_KEY'),
|
36 |
embedding=embedding_model,
|
37 |
index_name='rag-rubic',
|
38 |
namespace='vectors_lightmodel'
|
|
|
46 |
# Initialize the LLM
|
47 |
llm = ChatOpenAI(
|
48 |
model='gpt-4o-mini',
|
49 |
+
api_key=os.environ.get('OPENAI_KEY'),
|
50 |
temperature=0.2
|
51 |
)
|
52 |
|
|
|
85 |
rag_chain = prompt | llm | StrOutputParser()
|
86 |
|
87 |
# Web search tool for adding data from websites
|
88 |
+
web_search_tool = TavilySearchResults(api_key=os.environ.get('TAVILY_API_KEY'), k=10)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# Define Graph states and transitions
|
93 |
class GraphState(TypedDict):
|
|
|
110 |
return {'documents': [], 'question': question, 'need_web_search': 'yes'}
|
111 |
|
112 |
def grade_docs(state):
|
113 |
+
"""Grades the docs generated by the retriever_db
|
114 |
+
If 1, returns the docs if 0 proceeds for web search"""
|
115 |
question = state['question']
|
116 |
docs = state['documents']
|
117 |
+
filterd_data = []
|
118 |
+
web = "no"
|
119 |
+
for data in docs:
|
120 |
+
score = retrieval_grader.invoke({'question':question, 'documents':docs})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
grade = score.binary_score
|
123 |
+
|
124 |
+
if grade == 'yes':
|
125 |
+
filterd_data.append(data)
|
126 |
+
else:
|
127 |
+
#print("----------Failed, proceeding with WebSearch------------------")
|
128 |
+
web = 'yes'
|
129 |
+
return {"documents": filterd_data, "question": question, "need_web_search": web}
|
130 |
+
|
131 |
|
132 |
def decide(state):
|
133 |
"""Decide if the generation should be based on DB or web search DATA"""
|
|
|
138 |
return 'generate'
|
139 |
|
140 |
def web_search(state):
|
141 |
+
"""Perform a web search and store both content and source URLs."""
|
142 |
question = state['question']
|
143 |
+
documents = state["documents"]
|
144 |
|
145 |
+
# Get search results
|
146 |
+
results = web_search_tool.invoke({"query": question})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
# Process results with sources
|
149 |
+
docs = []
|
150 |
+
for res in results:
|
151 |
+
content = res["content"] # Extract answer content
|
152 |
+
source = res["url"] # Extract source URL
|
153 |
+
|
154 |
+
# Create Document with metadata
|
155 |
+
doc = Document(page_content=content, metadata={"source": source})
|
156 |
+
docs.append(doc)
|
157 |
+
|
158 |
+
if not results:
|
159 |
+
#print("No results from web search. Returning default response.")
|
160 |
+
return {"documents": [], "question": question}
|
161 |
+
|
162 |
+
documents.extend(docs)
|
163 |
+
return {"documents": documents, "question": question}
|
164 |
+
|
165 |
|
166 |
def generate(state):
|
167 |
+
#print("Inside generate function") # Debugging
|
168 |
+
documents = state['documents']
|
169 |
question = state['question']
|
170 |
|
171 |
+
# Generate response using retrieved documents
|
172 |
+
response = rag_chain.invoke({'context': documents, 'question': question})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# Extract source URLs
|
175 |
+
sources = [doc.metadata.get("source", "Unknown source") for doc in documents if "source" in doc.metadata]
|
176 |
+
|
177 |
+
# Format response with citations
|
178 |
+
formatted_response = response + "\n\nSources:\n" + "\n".join(sources) if sources else response
|
179 |
+
|
180 |
+
#print("Generated response:", formatted_response) # Debugging
|
181 |
+
|
182 |
+
# Return response with sources
|
183 |
return {
|
184 |
'documents': documents,
|
185 |
'question': question,
|
186 |
+
'generation': formatted_response # Append sources to the response
|
187 |
}
|
188 |
|
189 |
+
|
190 |
# Compile Workflow
|
191 |
workflow = StateGraph(GraphState)
|
192 |
workflow.add_node("retrieve", retrieve_db)
|
|
|
231 |
else:
|
232 |
response = "I couldn't find relevant information to answer your question."
|
233 |
except Exception as e:
|
234 |
+
#print(f"Error in crag execution: {e}")
|
235 |
response = "I encountered an error while processing your request. Please try again."
|
236 |
|
237 |
# Update the last response in history
|