import cv2 import numpy as np def apply_gaussian_blur(mask, kernel_size=5): """Apply Gaussian blur to smooth the mask edges.""" return cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0) def apply_threshold(mask, threshold=127): """Apply binary threshold to sharpen the mask.""" _, binary_mask = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY) return binary_mask def refine_edges(mask, kernel_size=3): """Refine edges using morphological operations.""" kernel = np.ones((kernel_size, kernel_size), np.uint8) eroded = cv2.erode(mask, kernel, iterations=1) dilated = cv2.dilate(mask, kernel, iterations=1) refined = dilated - eroded return cv2.bitwise_or(eroded, refined) def apply_contour_smoothing(mask): """Smooth contours of the mask.""" contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) smooth_mask = np.zeros_like(mask) for contour in contours: epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) cv2.drawContours(smooth_mask, [approx], 0, 255, -1) return smooth_mask def refine_mask(mask, blur_kernel=5, edge_kernel=3, threshold_value=127): """Apply a series of refinement operations to the mask.""" mask = apply_gaussian_blur(mask, blur_kernel) mask = apply_threshold(mask, threshold_value) mask = refine_edges(mask, edge_kernel) mask = apply_contour_smoothing(mask) return mask def apply_morphology(mask, kernel_size=3): """Apply morphological operations to clean up the mask.""" kernel = np.ones((kernel_size, kernel_size), np.uint8) # Opening operation to remove small noise mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # Closing operation to fill small holes mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) return mask def remove_small_objects(mask, min_size=100): """Remove small objects from the mask based on area.""" # Ensure mask is binary and single channel if len(mask.shape) > 2: mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) _, binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY) num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary_mask, connectivity=8) for i in range(1, num_labels): # Start from 1 to skip the background if stats[i, cv2.CC_STAT_AREA] < min_size: binary_mask[labels == i] = 0 return binary_mask def clean_mask(mask, morph_kernel_size=3, min_object_size=100): """Apply both morphological operations and small object removal.""" mask = apply_morphology(mask, kernel_size=morph_kernel_size) mask = remove_small_objects(mask, min_size=min_object_size) return mask