Pavan2k4 commited on
Commit
bc3b349
·
verified ·
1 Parent(s): 28e3f14

Create clean_refine.py

Browse files
Files changed (1) hide show
  1. clean_refine.py +71 -0
clean_refine.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ def apply_gaussian_blur(mask, kernel_size=5):
5
+ """Apply Gaussian blur to smooth the mask edges."""
6
+ return cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
7
+
8
+ def apply_threshold(mask, threshold=127):
9
+ """Apply binary threshold to sharpen the mask."""
10
+ _, binary_mask = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
11
+ return binary_mask
12
+
13
+ def refine_edges(mask, kernel_size=3):
14
+ """Refine edges using morphological operations."""
15
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
16
+ eroded = cv2.erode(mask, kernel, iterations=1)
17
+ dilated = cv2.dilate(mask, kernel, iterations=1)
18
+ refined = dilated - eroded
19
+ return cv2.bitwise_or(eroded, refined)
20
+
21
+ def apply_contour_smoothing(mask):
22
+ """Smooth contours of the mask."""
23
+ contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
24
+ smooth_mask = np.zeros_like(mask)
25
+ for contour in contours:
26
+ epsilon = 0.02 * cv2.arcLength(contour, True)
27
+ approx = cv2.approxPolyDP(contour, epsilon, True)
28
+ cv2.drawContours(smooth_mask, [approx], 0, 255, -1)
29
+ return smooth_mask
30
+
31
+ def refine_mask(mask, blur_kernel=5, edge_kernel=3, threshold_value=127):
32
+ """Apply a series of refinement operations to the mask."""
33
+ mask = apply_gaussian_blur(mask, blur_kernel)
34
+ mask = apply_threshold(mask, threshold_value)
35
+ mask = refine_edges(mask, edge_kernel)
36
+ mask = apply_contour_smoothing(mask)
37
+ return mask
38
+
39
+
40
+ def apply_morphology(mask, kernel_size=3):
41
+ """Apply morphological operations to clean up the mask."""
42
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
43
+
44
+ # Opening operation to remove small noise
45
+ mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
46
+
47
+ # Closing operation to fill small holes
48
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
49
+
50
+ return mask
51
+
52
+ def remove_small_objects(mask, min_size=100):
53
+ """Remove small objects from the mask based on area."""
54
+ # Ensure mask is binary and single channel
55
+ if len(mask.shape) > 2:
56
+ mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
57
+ _, binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
58
+
59
+ num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary_mask, connectivity=8)
60
+
61
+ for i in range(1, num_labels): # Start from 1 to skip the background
62
+ if stats[i, cv2.CC_STAT_AREA] < min_size:
63
+ binary_mask[labels == i] = 0
64
+
65
+ return binary_mask
66
+
67
+ def clean_mask(mask, morph_kernel_size=3, min_object_size=100):
68
+ """Apply both morphological operations and small object removal."""
69
+ mask = apply_morphology(mask, kernel_size=morph_kernel_size)
70
+ mask = remove_small_objects(mask, min_size=min_object_size)
71
+ return mask