Spaces:
Sleeping
Sleeping
Create clean_refine.py
Browse files- clean_refine.py +71 -0
clean_refine.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def apply_gaussian_blur(mask, kernel_size=5):
|
5 |
+
"""Apply Gaussian blur to smooth the mask edges."""
|
6 |
+
return cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
|
7 |
+
|
8 |
+
def apply_threshold(mask, threshold=127):
|
9 |
+
"""Apply binary threshold to sharpen the mask."""
|
10 |
+
_, binary_mask = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
|
11 |
+
return binary_mask
|
12 |
+
|
13 |
+
def refine_edges(mask, kernel_size=3):
|
14 |
+
"""Refine edges using morphological operations."""
|
15 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
16 |
+
eroded = cv2.erode(mask, kernel, iterations=1)
|
17 |
+
dilated = cv2.dilate(mask, kernel, iterations=1)
|
18 |
+
refined = dilated - eroded
|
19 |
+
return cv2.bitwise_or(eroded, refined)
|
20 |
+
|
21 |
+
def apply_contour_smoothing(mask):
|
22 |
+
"""Smooth contours of the mask."""
|
23 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
24 |
+
smooth_mask = np.zeros_like(mask)
|
25 |
+
for contour in contours:
|
26 |
+
epsilon = 0.02 * cv2.arcLength(contour, True)
|
27 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
28 |
+
cv2.drawContours(smooth_mask, [approx], 0, 255, -1)
|
29 |
+
return smooth_mask
|
30 |
+
|
31 |
+
def refine_mask(mask, blur_kernel=5, edge_kernel=3, threshold_value=127):
|
32 |
+
"""Apply a series of refinement operations to the mask."""
|
33 |
+
mask = apply_gaussian_blur(mask, blur_kernel)
|
34 |
+
mask = apply_threshold(mask, threshold_value)
|
35 |
+
mask = refine_edges(mask, edge_kernel)
|
36 |
+
mask = apply_contour_smoothing(mask)
|
37 |
+
return mask
|
38 |
+
|
39 |
+
|
40 |
+
def apply_morphology(mask, kernel_size=3):
|
41 |
+
"""Apply morphological operations to clean up the mask."""
|
42 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
43 |
+
|
44 |
+
# Opening operation to remove small noise
|
45 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
46 |
+
|
47 |
+
# Closing operation to fill small holes
|
48 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
49 |
+
|
50 |
+
return mask
|
51 |
+
|
52 |
+
def remove_small_objects(mask, min_size=100):
|
53 |
+
"""Remove small objects from the mask based on area."""
|
54 |
+
# Ensure mask is binary and single channel
|
55 |
+
if len(mask.shape) > 2:
|
56 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
57 |
+
_, binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
58 |
+
|
59 |
+
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary_mask, connectivity=8)
|
60 |
+
|
61 |
+
for i in range(1, num_labels): # Start from 1 to skip the background
|
62 |
+
if stats[i, cv2.CC_STAT_AREA] < min_size:
|
63 |
+
binary_mask[labels == i] = 0
|
64 |
+
|
65 |
+
return binary_mask
|
66 |
+
|
67 |
+
def clean_mask(mask, morph_kernel_size=3, min_object_size=100):
|
68 |
+
"""Apply both morphological operations and small object removal."""
|
69 |
+
mask = apply_morphology(mask, kernel_size=morph_kernel_size)
|
70 |
+
mask = remove_small_objects(mask, min_size=min_object_size)
|
71 |
+
return mask
|