Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,45 @@
|
|
1 |
import streamlit as st
|
2 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
sys.path.append('Utils')
|
4 |
sys.path.append('model')
|
5 |
-
import torch
|
6 |
from model.CBAM.reunet_cbam import reunet_cbam
|
7 |
-
import cv2
|
8 |
-
from PIL import Image
|
9 |
from model.transform import transforms
|
10 |
-
import numpy as np
|
11 |
from model.unet import UNET
|
12 |
from Utils.area import pixel_to_sqft, process_and_overlay_image
|
13 |
-
import matplotlib.pyplot as plt
|
14 |
-
import time
|
15 |
-
import os
|
16 |
-
import csv
|
17 |
-
from datetime import datetime
|
18 |
from split_merge import split, merge
|
19 |
-
from Utils.convert import
|
20 |
-
import shutil
|
21 |
-
|
22 |
|
23 |
-
# Define directories
|
24 |
-
UPLOAD_DIR = "uploaded_images/"
|
25 |
-
MASK_DIR = "generated_masks/"
|
26 |
-
patches_folder = "Patches/"
|
27 |
-
pred_patches = "Patch_pred/"
|
28 |
-
CSV_LOG_PATH = "image_log.csv"
|
29 |
|
30 |
# Create directories
|
31 |
-
for directory in [UPLOAD_DIR, MASK_DIR, patches_folder, pred_patches]:
|
32 |
os.makedirs(directory, exist_ok=True)
|
33 |
|
34 |
# Load model
|
35 |
-
|
36 |
-
|
37 |
-
model
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def predict(image):
|
40 |
with torch.no_grad():
|
@@ -63,27 +68,6 @@ def log_image_details(image_id, image_filename, mask_filename):
|
|
63 |
|
64 |
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
|
65 |
|
66 |
-
def overlay_mask(image, mask, alpha=0.5, rgb=[255, 0, 0]):
|
67 |
-
# Ensure image is 3-channel
|
68 |
-
if len(image.shape) == 2:
|
69 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
70 |
-
|
71 |
-
# Ensure mask is binary and same shape as image
|
72 |
-
mask = mask.astype(bool)
|
73 |
-
if mask.shape[:2] != image.shape[:2]:
|
74 |
-
raise ValueError("Mask and image must have the same dimensions")
|
75 |
-
|
76 |
-
# Create color overlay
|
77 |
-
color_mask = np.zeros_like(image)
|
78 |
-
color_mask[mask] = rgb
|
79 |
-
|
80 |
-
# Blend the image and color mask
|
81 |
-
output = cv2.addWeighted(image, 1, color_mask, alpha, 0)
|
82 |
-
|
83 |
-
return output
|
84 |
-
|
85 |
-
import shutil # Add this import at the top of your file
|
86 |
-
|
87 |
def upload_page():
|
88 |
if 'file_uploaded' not in st.session_state:
|
89 |
st.session_state.file_uploaded = False
|
@@ -155,8 +139,9 @@ def upload_page():
|
|
155 |
Image.fromarray(mask).save(mask_filepath)
|
156 |
|
157 |
# Merge predicted patches
|
158 |
-
merged_mask_filename = f"
|
159 |
-
|
|
|
160 |
|
161 |
# Save merged mask
|
162 |
st.session_state.mask_filename = merged_mask_filename
|
@@ -176,7 +161,7 @@ def upload_page():
|
|
176 |
mask_filename = f"mask_{timestamp}.png"
|
177 |
mask_filepath = os.path.join(MASK_DIR, mask_filename)
|
178 |
Image.fromarray(mask).save(mask_filepath)
|
179 |
-
st.session_state.mask_filename =
|
180 |
|
181 |
st.session_state.file_uploaded = True
|
182 |
|
@@ -187,6 +172,7 @@ def upload_page():
|
|
187 |
st.success('Image analyzed')
|
188 |
st.session_state.page = 'result'
|
189 |
st.rerun()
|
|
|
190 |
def result_page():
|
191 |
st.title('Analysis Result')
|
192 |
|
@@ -211,7 +197,7 @@ def result_page():
|
|
211 |
col1.error(f"Original image file not found: {original_img_path}")
|
212 |
|
213 |
# Display predicted mask
|
214 |
-
mask_path = st.session_state.mask_filename
|
215 |
if os.path.exists(mask_path):
|
216 |
mask = Image.open(mask_path)
|
217 |
col2.image(mask, caption='Predicted Mask', use_column_width=True)
|
@@ -235,9 +221,6 @@ def result_page():
|
|
235 |
# Process and overlay image
|
236 |
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
|
237 |
|
238 |
-
# Convert BGR to RGB for displaying with st.image
|
239 |
-
# overlay_rgb = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2RGB)
|
240 |
-
|
241 |
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
|
242 |
else:
|
243 |
st.error("Image or mask file not found for overlay.")
|
@@ -263,4 +246,4 @@ def main():
|
|
263 |
result_page()
|
264 |
|
265 |
if __name__ == '__main__':
|
266 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import sys
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
import csv
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import torch
|
12 |
+
|
13 |
+
# Adjust import paths as needed
|
14 |
sys.path.append('Utils')
|
15 |
sys.path.append('model')
|
|
|
16 |
from model.CBAM.reunet_cbam import reunet_cbam
|
|
|
|
|
17 |
from model.transform import transforms
|
|
|
18 |
from model.unet import UNET
|
19 |
from Utils.area import pixel_to_sqft, process_and_overlay_image
|
|
|
|
|
|
|
|
|
|
|
20 |
from split_merge import split, merge
|
21 |
+
from Utils.convert import read_pansharpened_rgb
|
|
|
|
|
22 |
|
23 |
+
# Define directories for Hugging Face Spaces
|
24 |
+
UPLOAD_DIR = "/tmp/uploaded_images/"
|
25 |
+
MASK_DIR = "/tmp/generated_masks/"
|
26 |
+
patches_folder = "/tmp/Patches/"
|
27 |
+
pred_patches = "/tmp/Patch_pred/"
|
28 |
+
CSV_LOG_PATH = "outputs/image_log.csv"
|
29 |
|
30 |
# Create directories
|
31 |
+
for directory in [UPLOAD_DIR, MASK_DIR, patches_folder, pred_patches, "outputs"]:
|
32 |
os.makedirs(directory, exist_ok=True)
|
33 |
|
34 |
# Load model
|
35 |
+
@st.cache_resource
|
36 |
+
def load_model():
|
37 |
+
model = reunet_cbam()
|
38 |
+
model.load_state_dict(torch.load('latest.pth', map_location='cpu')['model_state_dict'])
|
39 |
+
model.eval()
|
40 |
+
return model
|
41 |
+
|
42 |
+
model = load_model()
|
43 |
|
44 |
def predict(image):
|
45 |
with torch.no_grad():
|
|
|
68 |
|
69 |
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def upload_page():
|
72 |
if 'file_uploaded' not in st.session_state:
|
73 |
st.session_state.file_uploaded = False
|
|
|
139 |
Image.fromarray(mask).save(mask_filepath)
|
140 |
|
141 |
# Merge predicted patches
|
142 |
+
merged_mask_filename = f"mask_{timestamp}.png"
|
143 |
+
merged_mask_path = os.path.join(MASK_DIR, merged_mask_filename)
|
144 |
+
merge(pred_patches, merged_mask_path, img_array.shape)
|
145 |
|
146 |
# Save merged mask
|
147 |
st.session_state.mask_filename = merged_mask_filename
|
|
|
161 |
mask_filename = f"mask_{timestamp}.png"
|
162 |
mask_filepath = os.path.join(MASK_DIR, mask_filename)
|
163 |
Image.fromarray(mask).save(mask_filepath)
|
164 |
+
st.session_state.mask_filename = mask_filename
|
165 |
|
166 |
st.session_state.file_uploaded = True
|
167 |
|
|
|
172 |
st.success('Image analyzed')
|
173 |
st.session_state.page = 'result'
|
174 |
st.rerun()
|
175 |
+
|
176 |
def result_page():
|
177 |
st.title('Analysis Result')
|
178 |
|
|
|
197 |
col1.error(f"Original image file not found: {original_img_path}")
|
198 |
|
199 |
# Display predicted mask
|
200 |
+
mask_path = os.path.join(MASK_DIR, st.session_state.mask_filename)
|
201 |
if os.path.exists(mask_path):
|
202 |
mask = Image.open(mask_path)
|
203 |
col2.image(mask, caption='Predicted Mask', use_column_width=True)
|
|
|
221 |
# Process and overlay image
|
222 |
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
|
223 |
|
|
|
|
|
|
|
224 |
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
|
225 |
else:
|
226 |
st.error("Image or mask file not found for overlay.")
|
|
|
246 |
result_page()
|
247 |
|
248 |
if __name__ == '__main__':
|
249 |
+
main()
|