Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,6 +42,7 @@ def predict(image):
|
|
42 |
|
43 |
def log_image_details(image_id, image_filename, mask_filename):
|
44 |
file_exists = os.path.exists(CSV_LOG_PATH)
|
|
|
45 |
current_time = datetime.now()
|
46 |
date = current_time.strftime('%Y-%m-%d')
|
47 |
time = current_time.strftime('%H:%M:%S')
|
@@ -51,89 +52,131 @@ def log_image_details(image_id, image_filename, mask_filename):
|
|
51 |
if not file_exists:
|
52 |
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename'])
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.session_state.tr_img = None
|
62 |
-
if 'page' in st.session_state:
|
63 |
-
del st.session_state.page
|
64 |
-
|
65 |
-
def process_image(image, timestamp):
|
66 |
-
filename = f"image_{timestamp}{os.path.splitext(image.name)[1]}"
|
67 |
-
filepath = os.path.join(UPLOAD_DIR, filename)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
st.success('GeoTIFF converted to 8-bit image')
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
def predict_image(img_array, filename, timestamp):
|
80 |
-
if img_array.shape[0] > 650 or img_array.shape[1] > 650:
|
81 |
-
split(os.path.join(UPLOAD_DIR, filename), patch_size=256)
|
82 |
-
|
83 |
-
with st.spinner('Analyzing...'):
|
84 |
-
for patch_filename in os.listdir(PATCHES_DIR):
|
85 |
-
if patch_filename.endswith(".png"):
|
86 |
-
patch_path = os.path.join(PATCHES_DIR, patch_filename)
|
87 |
-
patch_img = Image.open(patch_path)
|
88 |
-
patch_tr_img = transforms(patch_img)
|
89 |
-
prediction = predict(patch_tr_img)
|
90 |
-
mask = (prediction > 0.5).astype(np.uint8) * 255
|
91 |
-
mask_filename = f"mask_{patch_filename}"
|
92 |
-
mask_filepath = os.path.join(PRED_PATCHES_DIR, mask_filename)
|
93 |
-
Image.fromarray(mask).save(mask_filepath)
|
94 |
-
|
95 |
-
merged_mask_filename = f"mask_{timestamp}.png"
|
96 |
-
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
|
97 |
-
merge(PRED_PATCHES_DIR, merged_mask_filepath, img_array.shape)
|
98 |
-
|
99 |
-
st.info('Cleaning up temporary files...')
|
100 |
-
for dir in [PATCHES_DIR, PRED_PATCHES_DIR]:
|
101 |
-
shutil.rmtree(dir)
|
102 |
-
os.makedirs(dir)
|
103 |
-
st.success('Temporary files cleaned up')
|
104 |
-
else:
|
105 |
-
tr_img = transforms(Image.open(os.path.join(UPLOAD_DIR, filename)))
|
106 |
-
prediction = predict(tr_img)
|
107 |
-
mask = (prediction > 0.5).astype(np.uint8) * 255
|
108 |
-
merged_mask_filename = f"mask_{timestamp}.png"
|
109 |
-
merged_mask_filepath = os.path.join(MASK_DIR, merged_mask_filename)
|
110 |
-
Image.fromarray(mask).save(merged_mask_filepath)
|
111 |
|
112 |
-
return
|
|
|
|
|
113 |
|
114 |
def upload_page():
|
115 |
if 'file_uploaded' not in st.session_state:
|
116 |
st.session_state.file_uploaded = False
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif'])
|
119 |
|
120 |
-
if image is not None:
|
121 |
-
|
|
|
122 |
timestamp = int(time.time())
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
img = Image.open(filepath)
|
126 |
st.image(img, caption='Uploaded Image', use_column_width=True)
|
127 |
-
st.success(f'Image saved as {
|
128 |
|
129 |
-
|
|
|
|
|
|
|
130 |
img_array = np.array(img)
|
131 |
-
|
132 |
-
mask_filepath = predict_image(img_array, filename, timestamp)
|
133 |
-
st.session_state.mask_filename = mask_filepath
|
134 |
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
st.session_state.file_uploaded = True
|
138 |
|
139 |
if st.session_state.file_uploaded and st.button('View result'):
|
@@ -143,28 +186,31 @@ def upload_page():
|
|
143 |
st.success('Image analyzed')
|
144 |
st.session_state.page = 'result'
|
145 |
st.rerun()
|
146 |
-
|
147 |
def result_page():
|
148 |
st.title('Analysis Result')
|
149 |
|
150 |
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state:
|
151 |
st.error("No image or mask file found. Please upload and process an image first.")
|
152 |
if st.button('Back to Upload'):
|
153 |
-
|
|
|
|
|
|
|
154 |
st.rerun()
|
155 |
return
|
156 |
|
157 |
col1, col2 = st.columns(2)
|
158 |
|
|
|
159 |
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename)
|
160 |
-
mask_path = st.session_state.mask_filename
|
161 |
-
|
162 |
if os.path.exists(original_img_path):
|
163 |
original_img = Image.open(original_img_path)
|
164 |
col1.image(original_img, caption='Original Image', use_column_width=True)
|
165 |
else:
|
166 |
col1.error(f"Original image file not found: {original_img_path}")
|
167 |
|
|
|
|
|
168 |
if os.path.exists(mask_path):
|
169 |
mask = Image.open(mask_path)
|
170 |
col2.image(mask, caption='Predicted Mask', use_column_width=True)
|
@@ -173,23 +219,35 @@ def result_page():
|
|
173 |
|
174 |
st.subheader("Overlay with Area of Buildings (sqft)")
|
175 |
|
|
|
176 |
if os.path.exists(original_img_path) and os.path.exists(mask_path):
|
177 |
original_np = cv2.imread(original_img_path)
|
178 |
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
179 |
|
|
|
180 |
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
|
181 |
|
|
|
182 |
if original_np.shape[:2] != mask_np.shape[:2]:
|
183 |
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0]))
|
184 |
|
|
|
185 |
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
|
186 |
|
|
|
|
|
|
|
187 |
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
|
188 |
else:
|
189 |
st.error("Image or mask file not found for overlay.")
|
190 |
|
191 |
if st.button('Back to Upload'):
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
193 |
st.rerun()
|
194 |
|
195 |
def main():
|
@@ -204,4 +262,4 @@ def main():
|
|
204 |
result_page()
|
205 |
|
206 |
if __name__ == '__main__':
|
207 |
-
main()
|
|
|
42 |
|
43 |
def log_image_details(image_id, image_filename, mask_filename):
|
44 |
file_exists = os.path.exists(CSV_LOG_PATH)
|
45 |
+
|
46 |
current_time = datetime.now()
|
47 |
date = current_time.strftime('%Y-%m-%d')
|
48 |
time = current_time.strftime('%H:%M:%S')
|
|
|
52 |
if not file_exists:
|
53 |
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename'])
|
54 |
|
55 |
+
# Get the next S.No
|
56 |
+
if file_exists:
|
57 |
+
with open(CSV_LOG_PATH, mode='r') as f:
|
58 |
+
reader = csv.reader(f)
|
59 |
+
sno = sum(1 for row in reader)
|
60 |
+
else:
|
61 |
+
sno = 1
|
62 |
+
|
63 |
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
|
64 |
|
65 |
+
def overlay_mask(image, mask, alpha=0.5, rgb=[255, 0, 0]):
|
66 |
+
# Ensure image is 3-channel
|
67 |
+
if len(image.shape) == 2:
|
68 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Ensure mask is binary and same shape as image
|
71 |
+
mask = mask.astype(bool)
|
72 |
+
if mask.shape[:2] != image.shape[:2]:
|
73 |
+
raise ValueError("Mask and image must have the same dimensions")
|
74 |
|
75 |
+
# Create color overlay
|
76 |
+
color_mask = np.zeros_like(image)
|
77 |
+
color_mask[mask] = rgb
|
|
|
78 |
|
79 |
+
# Blend the image and color mask
|
80 |
+
output = cv2.addWeighted(image, 1, color_mask, alpha, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
return output
|
83 |
+
|
84 |
+
import shutil # Add this import at the top of your file
|
85 |
|
86 |
def upload_page():
|
87 |
if 'file_uploaded' not in st.session_state:
|
88 |
st.session_state.file_uploaded = False
|
89 |
|
90 |
+
if 'filename' not in st.session_state:
|
91 |
+
st.session_state.filename = None
|
92 |
+
|
93 |
+
if 'mask_filename' not in st.session_state:
|
94 |
+
st.session_state.mask_filename = None
|
95 |
+
|
96 |
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif'])
|
97 |
|
98 |
+
if image is not None and not st.session_state.file_uploaded:
|
99 |
+
bytes_data = image.getvalue()
|
100 |
+
|
101 |
timestamp = int(time.time())
|
102 |
+
original_filename = image.name
|
103 |
+
file_extension = os.path.splitext(original_filename)[1].lower()
|
104 |
+
|
105 |
+
if file_extension in ['.tiff', '.tif']:
|
106 |
+
filename = f"image_{timestamp}.tif"
|
107 |
+
converted_filename = f"image_{timestamp}_converted.png"
|
108 |
+
else:
|
109 |
+
filename = f"image_{timestamp}.png"
|
110 |
+
converted_filename = filename
|
111 |
+
|
112 |
+
filepath = os.path.join(UPLOAD_DIR, filename)
|
113 |
+
converted_filepath = os.path.join(UPLOAD_DIR, converted_filename)
|
114 |
+
|
115 |
+
with open(filepath, "wb") as f:
|
116 |
+
f.write(bytes_data)
|
117 |
+
|
118 |
+
# Check if the uploaded file is a GeoTIFF
|
119 |
+
if file_extension in ['.tiff', '.tif']:
|
120 |
+
st.info('Processing GeoTIFF image...')
|
121 |
+
rgb_image = read_pansharpened_rgb(filepath)
|
122 |
+
cv2.imwrite(converted_filepath, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
|
123 |
+
st.success(f'GeoTIFF converted to 8-bit image and saved as {converted_filename}')
|
124 |
+
img = Image.open(converted_filepath)
|
125 |
+
else:
|
126 |
+
img = Image.open(filepath)
|
127 |
|
|
|
128 |
st.image(img, caption='Uploaded Image', use_column_width=True)
|
129 |
+
st.success(f'Image saved as {converted_filename}')
|
130 |
|
131 |
+
# Store the full path of the converted image
|
132 |
+
st.session_state.filename = converted_filename
|
133 |
+
|
134 |
+
# Convert image to numpy array
|
135 |
img_array = np.array(img)
|
|
|
|
|
|
|
136 |
|
137 |
+
# Check if image shape is more than 650x650
|
138 |
+
if img_array.shape[0] > 650 or img_array.shape[1] > 650:
|
139 |
+
# Split image into patches
|
140 |
+
split(converted_filepath, patch_size=512)
|
141 |
+
|
142 |
+
# Display buffer while analyzing
|
143 |
+
with st.spinner('Analyzing...'):
|
144 |
+
# Predict on each patch
|
145 |
+
for patch_filename in os.listdir(patches_folder):
|
146 |
+
if patch_filename.endswith(".png"):
|
147 |
+
patch_path = os.path.join(patches_folder, patch_filename)
|
148 |
+
patch_img = Image.open(patch_path)
|
149 |
+
patch_tr_img = transforms(patch_img)
|
150 |
+
prediction = predict(patch_tr_img)
|
151 |
+
mask = (prediction > 0.5).astype(np.uint8) * 255
|
152 |
+
mask_filename = f"mask_{patch_filename}"
|
153 |
+
mask_filepath = os.path.join(pred_patches, mask_filename)
|
154 |
+
Image.fromarray(mask).save(mask_filepath)
|
155 |
+
|
156 |
+
# Merge predicted patches
|
157 |
+
merged_mask_filename = f"generated_masks/mask_{timestamp}.png"
|
158 |
+
merge(pred_patches, merged_mask_filename, img_array.shape)
|
159 |
+
|
160 |
+
# Save merged mask
|
161 |
+
st.session_state.mask_filename = merged_mask_filename
|
162 |
+
|
163 |
+
# Clean up temporary patch files
|
164 |
+
st.info('Cleaning up temporary files...')
|
165 |
+
shutil.rmtree(patches_folder)
|
166 |
+
shutil.rmtree(pred_patches)
|
167 |
+
os.makedirs(patches_folder) # Recreate empty folders
|
168 |
+
os.makedirs(pred_patches)
|
169 |
+
st.success('Temporary files cleaned up')
|
170 |
+
else:
|
171 |
+
# Predict on whole image
|
172 |
+
st.session_state.tr_img = transforms(img)
|
173 |
+
prediction = predict(st.session_state.tr_img)
|
174 |
+
mask = (prediction > 0.5).astype(np.uint8) * 255
|
175 |
+
mask_filename = f"mask_{timestamp}.png"
|
176 |
+
mask_filepath = os.path.join(MASK_DIR, mask_filename)
|
177 |
+
Image.fromarray(mask).save(mask_filepath)
|
178 |
+
st.session_state.mask_filename = mask_filepath
|
179 |
+
|
180 |
st.session_state.file_uploaded = True
|
181 |
|
182 |
if st.session_state.file_uploaded and st.button('View result'):
|
|
|
186 |
st.success('Image analyzed')
|
187 |
st.session_state.page = 'result'
|
188 |
st.rerun()
|
|
|
189 |
def result_page():
|
190 |
st.title('Analysis Result')
|
191 |
|
192 |
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state:
|
193 |
st.error("No image or mask file found. Please upload and process an image first.")
|
194 |
if st.button('Back to Upload'):
|
195 |
+
st.session_state.page = 'upload'
|
196 |
+
st.session_state.file_uploaded = False
|
197 |
+
st.session_state.filename = None
|
198 |
+
st.session_state.mask_filename = None
|
199 |
st.rerun()
|
200 |
return
|
201 |
|
202 |
col1, col2 = st.columns(2)
|
203 |
|
204 |
+
# Display original image
|
205 |
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename)
|
|
|
|
|
206 |
if os.path.exists(original_img_path):
|
207 |
original_img = Image.open(original_img_path)
|
208 |
col1.image(original_img, caption='Original Image', use_column_width=True)
|
209 |
else:
|
210 |
col1.error(f"Original image file not found: {original_img_path}")
|
211 |
|
212 |
+
# Display predicted mask
|
213 |
+
mask_path = st.session_state.mask_filename
|
214 |
if os.path.exists(mask_path):
|
215 |
mask = Image.open(mask_path)
|
216 |
col2.image(mask, caption='Predicted Mask', use_column_width=True)
|
|
|
219 |
|
220 |
st.subheader("Overlay with Area of Buildings (sqft)")
|
221 |
|
222 |
+
# Display overlayed image
|
223 |
if os.path.exists(original_img_path) and os.path.exists(mask_path):
|
224 |
original_np = cv2.imread(original_img_path)
|
225 |
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
226 |
|
227 |
+
# Ensure mask is binary
|
228 |
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
|
229 |
|
230 |
+
# Resize mask to match original image size if necessary
|
231 |
if original_np.shape[:2] != mask_np.shape[:2]:
|
232 |
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0]))
|
233 |
|
234 |
+
# Process and overlay image
|
235 |
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
|
236 |
|
237 |
+
# Convert BGR to RGB for displaying with st.image
|
238 |
+
# overlay_rgb = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2RGB)
|
239 |
+
|
240 |
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
|
241 |
else:
|
242 |
st.error("Image or mask file not found for overlay.")
|
243 |
|
244 |
if st.button('Back to Upload'):
|
245 |
+
shutil.rmtree(patches_folder)
|
246 |
+
shutil.rmtree(pred_patches)
|
247 |
+
st.session_state.page = 'upload'
|
248 |
+
st.session_state.file_uploaded = False
|
249 |
+
st.session_state.filename = None
|
250 |
+
st.session_state.mask_filename = None
|
251 |
st.rerun()
|
252 |
|
253 |
def main():
|
|
|
262 |
result_page()
|
263 |
|
264 |
if __name__ == '__main__':
|
265 |
+
main()
|