Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,7 @@ import numpy as np
|
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
-
from
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
sys.path.append('Utils')
|
18 |
sys.path.append('model')
|
19 |
from model.CBAM.reunet_cbam import reunet_cbam
|
@@ -22,6 +19,9 @@ from model.unet import UNET
|
|
22 |
from Utils.area import pixel_to_sqft, process_and_overlay_image
|
23 |
from Utils.convert import read_pansharpened_rgb
|
24 |
|
|
|
|
|
|
|
25 |
@st.cache_resource
|
26 |
def load_model():
|
27 |
model = reunet_cbam()
|
@@ -29,16 +29,6 @@ def load_model():
|
|
29 |
model.eval()
|
30 |
return model
|
31 |
|
32 |
-
@st.cache_resource
|
33 |
-
def get_api():
|
34 |
-
hf_api = HfApi()
|
35 |
-
HF_TOKEN = st.secrets.get("HF_TOKEN")
|
36 |
-
if not HF_TOKEN:
|
37 |
-
st.error("HF_TOKEN not found")
|
38 |
-
st.stop()
|
39 |
-
return HF_TOKEN,hf_api
|
40 |
-
|
41 |
-
HF_TOKEN,hf_api = get_api()
|
42 |
|
43 |
|
44 |
|
@@ -212,9 +202,9 @@ def upload_page():
|
|
212 |
|
213 |
|
214 |
#st.success(f"Image saved to {filepath}")
|
215 |
-
|
216 |
# Save image to Hugging Face repo----------------------------------------------------------------------------------------------------------------------------------
|
217 |
-
|
218 |
|
219 |
# Check if the uploaded file is a GeoTIFF
|
220 |
if file_extension in ['.tiff', '.tif']:
|
@@ -254,7 +244,8 @@ def upload_page():
|
|
254 |
st.session_state.mask_filename = mask_filename
|
255 |
|
256 |
# Save mask to Hugging Face repo---------------------------------------------------------------------------------------------
|
257 |
-
|
|
|
258 |
|
259 |
# Log image details
|
260 |
log_image_details(timestamp, converted_filename, mask_filename)
|
|
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
+
from dataset import Dataset, push_to_hub
|
|
|
|
|
|
|
14 |
sys.path.append('Utils')
|
15 |
sys.path.append('model')
|
16 |
from model.CBAM.reunet_cbam import reunet_cbam
|
|
|
19 |
from Utils.area import pixel_to_sqft, process_and_overlay_image
|
20 |
from Utils.convert import read_pansharpened_rgb
|
21 |
|
22 |
+
|
23 |
+
dataset = Dataset("SAT_Buildings")
|
24 |
+
|
25 |
@st.cache_resource
|
26 |
def load_model():
|
27 |
model = reunet_cbam()
|
|
|
29 |
model.eval()
|
30 |
return model
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
|
|
202 |
|
203 |
|
204 |
#st.success(f"Image saved to {filepath}")
|
205 |
+
uploaded_img = Image.open(filepath)
|
206 |
# Save image to Hugging Face repo----------------------------------------------------------------------------------------------------------------------------------
|
207 |
+
dataset.add({"image":uploaded_img, "folder":"uploaded_imgs"})
|
208 |
|
209 |
# Check if the uploaded file is a GeoTIFF
|
210 |
if file_extension in ['.tiff', '.tif']:
|
|
|
244 |
st.session_state.mask_filename = mask_filename
|
245 |
|
246 |
# Save mask to Hugging Face repo---------------------------------------------------------------------------------------------
|
247 |
+
mask = Image.open(mask_filepath)
|
248 |
+
dataset.add({"image":mask, "folder":"generated_mask"})
|
249 |
|
250 |
# Log image details
|
251 |
log_image_details(timestamp, converted_filename, mask_filename)
|