Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.functional as F | |
from bn import batch_norm | |
class residual(nn.Module): | |
def __init__(self, inp, out, stride = 1): | |
super().__init__() | |
self.bn1 = batch_norm(inp) | |
self.conv1 = nn.Conv2d(inp, out, kernel_size=3, padding = 1, stride = stride) | |
self.bn2 = batch_norm(out) | |
self.conv2 = nn.Conv2d(out, out, kernel_size = 3, padding = 1, stride = 1) | |
# skip cpnnection | |
self.concat = nn.Conv2d(inp, out, kernel_size = 1, padding = 0, stride = stride) | |
def forward(self, input): | |
x = self.bn1(input) | |
x = self.conv1(x) | |
x = self.bn2(x) | |
x = self.conv2(x) | |
skip = self.concat(input) | |
skip = x+skip | |
return skip | |