Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sys | |
import os | |
import shutil | |
import time | |
from datetime import datetime | |
import csv | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torch | |
from huggingface_hub import HfApi | |
# Adjust import paths as needed | |
sys.path.append('Utils') | |
sys.path.append('model') | |
from model.CBAM.reunet_cbam import reunet_cbam | |
from model.transform import transforms | |
from model.unet import UNET | |
from Utils.area import pixel_to_sqft, process_and_overlay_image | |
from split_merge import split, merge | |
from Utils.convert import read_pansharpened_rgb | |
# Initialize Hugging Face API | |
hf_api = HfApi() | |
# Get the token from secrets | |
HF_TOKEN = st.secrets.get("HF_TOKEN") | |
if not HF_TOKEN: | |
st.error("HF_TOKEN not found in secrets. Please set it in your Space's Configuration > Secrets.") | |
st.stop() | |
# Your Space ID (this should match exactly with your Hugging Face Space URL) | |
REPO_ID = "Pavan2k4/Building_area" | |
REPO_TYPE = "space" | |
# Define base directory for Hugging Face Spaces | |
BASE_DIR = "/home/user" | |
# Define subdirectories | |
UPLOAD_DIR = os.path.join(BASE_DIR, "uploaded_images") | |
MASK_DIR = os.path.join(BASE_DIR, "generated_masks") | |
PATCHES_DIR = os.path.join(BASE_DIR, "patches") | |
PRED_PATCHES_DIR = os.path.join(BASE_DIR, "pred_patches") | |
CSV_LOG_PATH = os.path.join(BASE_DIR, "image_log.csv") | |
# Create directories | |
for directory in [UPLOAD_DIR, MASK_DIR, PATCHES_DIR, PRED_PATCHES_DIR]: | |
os.makedirs(directory, exist_ok=True) | |
# Load model | |
def load_model(): | |
model = reunet_cbam() | |
model.load_state_dict(torch.load('latest.pth', map_location='cpu')['model_state_dict']) | |
model.eval() | |
return model | |
model = load_model() | |
def predict(image): | |
with torch.no_grad(): | |
output = model(image.unsqueeze(0)) | |
return output.squeeze().cpu().numpy() | |
def save_to_hf_repo(local_path, repo_path): | |
try: | |
hf_api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=repo_path, | |
repo_id=REPO_ID, | |
repo_type=REPO_TYPE, | |
token=HF_TOKEN | |
) | |
st.success(f"File uploaded successfully to {repo_path}") | |
except Exception as e: | |
st.error(f"Error uploading file: {str(e)}") | |
st.error("Detailed error information:") | |
st.exception(e) | |
def log_image_details(image_id, image_filename, mask_filename): | |
file_exists = os.path.exists(CSV_LOG_PATH) | |
current_time = datetime.now() | |
date = current_time.strftime('%Y-%m-%d') | |
time = current_time.strftime('%H:%M:%S') | |
with open(CSV_LOG_PATH, mode='a', newline='') as file: | |
writer = csv.writer(file) | |
if not file_exists: | |
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename']) | |
# Get the next S.No | |
if file_exists: | |
with open(CSV_LOG_PATH, mode='r') as f: | |
reader = csv.reader(f) | |
sno = sum(1 for row in reader) | |
else: | |
sno = 1 | |
writer.writerow([sno, date, time, image_id, image_filename, mask_filename]) | |
# Save CSV to Hugging Face repo | |
save_to_hf_repo(CSV_LOG_PATH, 'image_log.csv') | |
def upload_page(): | |
if 'file_uploaded' not in st.session_state: | |
st.session_state.file_uploaded = False | |
if 'filename' not in st.session_state: | |
st.session_state.filename = None | |
if 'mask_filename' not in st.session_state: | |
st.session_state.mask_filename = None | |
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif']) | |
if image is not None and not st.session_state.file_uploaded: | |
try: | |
bytes_data = image.getvalue() | |
timestamp = int(time.time()) | |
original_filename = image.name | |
file_extension = os.path.splitext(original_filename)[1].lower() | |
if file_extension in ['.tiff', '.tif']: | |
filename = f"image_{timestamp}.tif" | |
converted_filename = f"image_{timestamp}_converted.png" | |
else: | |
filename = f"image_{timestamp}.png" | |
converted_filename = filename | |
filepath = os.path.join(UPLOAD_DIR, filename) | |
converted_filepath = os.path.join(UPLOAD_DIR, converted_filename) | |
with open(filepath, "wb") as f: | |
f.write(bytes_data) | |
st.success(f"Image saved to {filepath}") | |
# Save image to Hugging Face repo | |
save_to_hf_repo(filepath, f'uploaded_images/{filename}') | |
# Check if the uploaded file is a GeoTIFF | |
if file_extension in ['.tiff', '.tif']: | |
st.info('Processing GeoTIFF image...') | |
rgb_image = read_pansharpened_rgb(filepath) | |
cv2.imwrite(converted_filepath, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)) | |
st.success(f'GeoTIFF converted to 8-bit image and saved as {converted_filename}') | |
img = Image.open(converted_filepath) | |
else: | |
img = Image.open(filepath) | |
st.image(img, caption='Uploaded Image', use_column_width=True) | |
st.success(f'Image processed and saved as {converted_filename}') | |
# Store the full path of the converted image | |
st.session_state.filename = converted_filename | |
# Convert image to numpy array | |
img_array = np.array(img) | |
# Check if image shape is more than 650x650 | |
if img_array.shape[0] > 650 or img_array.shape[1] > 650: | |
# Split image into patches | |
split(converted_filepath, patch_size=512) | |
# Display buffer while analyzing | |
with st.spinner('Analyzing...'): | |
# Predict on each patch | |
for patch_filename in os.listdir(PATCHES_DIR): | |
if patch_filename.endswith(".png"): | |
patch_path = os.path.join(PATCHES_DIR, patch_filename) | |
patch_img = Image.open(patch_path) | |
patch_tr_img = transforms(patch_img) | |
prediction = predict(patch_tr_img) | |
mask = (prediction > 0.5).astype(np.uint8) * 255 | |
mask_filename = f"mask_{patch_filename}" | |
mask_filepath = os.path.join(PRED_PATCHES_DIR, mask_filename) | |
Image.fromarray(mask).save(mask_filepath) | |
# Merge predicted patches | |
merged_mask_filename = f"mask_{timestamp}.png" | |
merged_mask_path = os.path.join(MASK_DIR, merged_mask_filename) | |
merge(PRED_PATCHES_DIR, merged_mask_path, img_array.shape) | |
# Save merged mask | |
st.session_state.mask_filename = merged_mask_filename | |
# Clean up temporary patch files | |
st.info('Cleaning up temporary files...') | |
shutil.rmtree(PATCHES_DIR) | |
shutil.rmtree(PRED_PATCHES_DIR) | |
os.makedirs(PATCHES_DIR) # Recreate empty folders | |
os.makedirs(PRED_PATCHES_DIR) | |
st.success('Temporary files cleaned up') | |
else: | |
# Predict on whole image | |
st.session_state.tr_img = transforms(img) | |
prediction = predict(st.session_state.tr_img) | |
mask = (prediction > 0.5).astype(np.uint8) * 255 | |
mask_filename = f"mask_{timestamp}.png" | |
mask_filepath = os.path.join(MASK_DIR, mask_filename) | |
Image.fromarray(mask).save(mask_filepath) | |
st.session_state.mask_filename = mask_filename | |
# Save mask to Hugging Face repo | |
mask_filepath = os.path.join(MASK_DIR, st.session_state.mask_filename) | |
save_to_hf_repo(mask_filepath, f'generated_masks/{st.session_state.mask_filename}') | |
# Log image details | |
log_image_details(timestamp, converted_filename, st.session_state.mask_filename) | |
st.session_state.file_uploaded = True | |
except Exception as e: | |
st.error(f"An error occurred: {str(e)}") | |
st.error("Please check the logs for more details.") | |
print(f"Error in upload_page: {str(e)}") # This will appear in the Streamlit logs | |
if st.session_state.file_uploaded and st.button('View result'): | |
if st.session_state.filename is None: | |
st.error("Please upload an image before viewing the result.") | |
else: | |
st.success('Image analyzed') | |
st.session_state.page = 'result' | |
st.rerun() | |
def result_page(): | |
st.title('Analysis Result') | |
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state: | |
st.error("No image or mask file found. Please upload and process an image first.") | |
if st.button('Back to Upload'): | |
st.session_state.page = 'upload' | |
st.session_state.file_uploaded = False | |
st.session_state.filename = None | |
st.session_state.mask_filename = None | |
st.rerun() | |
return | |
col1, col2 = st.columns(2) | |
# Display original image | |
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename) | |
if os.path.exists(original_img_path): | |
original_img = Image.open(original_img_path) | |
col1.image(original_img, caption='Original Image', use_column_width=True) | |
else: | |
col1.error(f"Original image file not found: {original_img_path}") | |
# Display predicted mask | |
mask_path = os.path.join(MASK_DIR, st.session_state.mask_filename) | |
if os.path.exists(mask_path): | |
mask = Image.open(mask_path) | |
col2.image(mask, caption='Predicted Mask', use_column_width=True) | |
else: | |
col2.error(f"Predicted mask file not found: {mask_path}") | |
st.subheader("Overlay with Area of Buildings (sqft)") | |
# Display overlayed image | |
if os.path.exists(original_img_path) and os.path.exists(mask_path): | |
original_np = cv2.imread(original_img_path) | |
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) | |
# Ensure mask is binary | |
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY) | |
# Resize mask to match original image size if necessary | |
if original_np.shape[:2] != mask_np.shape[:2]: | |
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0])) | |
# Process and overlay image | |
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png') | |
st.image(overlay_img, caption='Overlay Image', use_column_width=True) | |
else: | |
st.error("Image or mask file not found for overlay.") | |
if st.button('Back to Upload'): | |
shutil.rmtree(PATCHES_DIR) | |
shutil.rmtree(PRED_PATCHES_DIR) | |
st.session_state.page = 'upload' | |
st.session_state.file_uploaded = False | |
st.session_state.filename = None | |
st.session_state.mask_filename = None | |
st.rerun() | |
def main(): | |
st.title('Building area estimation') | |
if 'page' not in st.session_state: | |
st.session_state.page = 'upload' | |
if st.session_state.page == 'upload': | |
upload_page() | |
elif st.session_state.page == 'result': | |
result_page() | |
if __name__ == '__main__': | |
main() |