Building_area / app.py
Pavan2k4's picture
Rename streamlit_app.py to app.py
4e0dc44 verified
raw
history blame
9.16 kB
import streamlit as st
import sys
import torch
from model.CBAM.reunet_cbam import reunet_cbam
import cv2
from PIL import Image
from model.transform import transforms
import numpy as np
from model.unet import UNET
from area import pixel_to_sqft, process_and_overlay_image
import matplotlib.pyplot as plt
import time
import os
import csv
from datetime import datetime
from split_merge import split, merge
from convert_raster import convert_gtiff_to_8bit
import shutil
patches_folder = 'data/Patches'
pred_patches = 'data/Patch_pred'
os.makedirs(patches_folder, exist_ok=True)
os.makedirs(pred_patches, exist_ok=True)
# Define the upload directories
UPLOAD_DIR = "data/uploaded_images"
MASK_DIR = "data/generated_masks"
CSV_LOG_PATH = "image_log.csv"
# Create the directories if they don't exist
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(MASK_DIR, exist_ok=True)
model = reunet_cbam()
model.load_state_dict(torch.load('latest.pth', map_location='cpu')['model_state_dict'])
model.eval()
def predict(image):
with torch.no_grad():
output = model(image.unsqueeze(0))
return output.squeeze().cpu().numpy()
def log_image_details(image_id, image_filename, mask_filename):
file_exists = os.path.exists(CSV_LOG_PATH)
current_time = datetime.now()
date = current_time.strftime('%Y-%m-%d')
time = current_time.strftime('%H:%M:%S')
with open(CSV_LOG_PATH, mode='a', newline='') as file:
writer = csv.writer(file)
if not file_exists:
writer.writerow(['S.No', 'Date', 'Time', 'Image ID', 'Image Filename', 'Mask Filename'])
# Get the next S.No
if file_exists:
with open(CSV_LOG_PATH, mode='r') as f:
reader = csv.reader(f)
sno = sum(1 for row in reader)
else:
sno = 1
writer.writerow([sno, date, time, image_id, image_filename, mask_filename])
def overlay_mask(image, mask, alpha=0.5, rgb=[255, 0, 0]):
# Ensure image is 3-channel
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Ensure mask is binary and same shape as image
mask = mask.astype(bool)
if mask.shape[:2] != image.shape[:2]:
raise ValueError("Mask and image must have the same dimensions")
# Create color overlay
color_mask = np.zeros_like(image)
color_mask[mask] = rgb
# Blend the image and color mask
output = cv2.addWeighted(image, 1, color_mask, alpha, 0)
return output
def reset_state():
st.session_state.file_uploaded = False
st.session_state.filename = None
st.session_state.mask_filename = None
st.session_state.tr_img = None
if 'page' in st.session_state:
del st.session_state.page
def upload_page():
if 'file_uploaded' not in st.session_state:
st.session_state.file_uploaded = False
if 'filename' not in st.session_state:
st.session_state.filename = None
if 'mask_filename' not in st.session_state:
st.session_state.mask_filename = None
image = st.file_uploader('Choose a satellite image', type=['jpg', 'png', 'jpeg', 'tiff', 'tif'])
if image is not None:
reset_state() # Reset the state when a new image is uploaded
bytes_data = image.getvalue()
timestamp = int(time.time())
original_filename = image.name
file_extension = os.path.splitext(original_filename)[1].lower()
if file_extension in ['.tiff', '.tif']:
filename = f"image_{timestamp}.tif"
else:
filename = f"image_{timestamp}.png"
filepath = os.path.join(UPLOAD_DIR, filename)
with open(filepath, "wb") as f:
f.write(bytes_data)
# Check if the uploaded file is a GeoTIFF
if file_extension in ['.tiff', '.tif']:
st.info('Processing GeoTIFF image...')
convert_gtiff_to_8bit(filepath)
st.success('GeoTIFF converted to 8-bit image')
img = Image.open(filepath)
st.image(img, caption='Uploaded Image', use_column_width=True)
st.success(f'Image saved as {filename}')
# Store the full path of the uploaded image
st.session_state.filename = filename
# Convert image to numpy array
img_array = np.array(img)
# Check if image shape is more than 650x650
if img_array.shape[0] > 650 or img_array.shape[1] > 650:
# Split image into patches
split(filepath, patch_size=256)
# Display buffer while analyzing
with st.spinner('Analyzing...'):
# Predict on each patch
for patch_filename in os.listdir(patches_folder):
if patch_filename.endswith(".png"):
patch_path = os.path.join(patches_folder, patch_filename)
patch_img = Image.open(patch_path)
patch_tr_img = transforms(patch_img)
prediction = predict(patch_tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
mask_filename = f"mask_{patch_filename}"
mask_filepath = os.path.join(pred_patches, mask_filename)
Image.fromarray(mask).save(mask_filepath)
# Merge predicted patches
merged_mask_filename = f"generated_masks/mask_{timestamp}.png"
merge(pred_patches, merged_mask_filename, img_array.shape)
# Save merged mask
st.session_state.mask_filename = merged_mask_filename
# Clean up temporary patch files
st.info('Cleaning up temporary files...')
shutil.rmtree(patches_folder)
shutil.rmtree(pred_patches)
os.makedirs(patches_folder) # Recreate empty folders
os.makedirs(pred_patches)
st.success('Temporary files cleaned up')
else:
# Predict on whole image
st.session_state.tr_img = transforms(img)
prediction = predict(st.session_state.tr_img)
mask = (prediction > 0.5).astype(np.uint8) * 255
mask_filename = f"mask_{timestamp}.png"
mask_filepath = os.path.join(MASK_DIR, mask_filename)
Image.fromarray(mask).save(mask_filepath)
st.session_state.mask_filename = mask_filepath
st.session_state.file_uploaded = True
if st.session_state.file_uploaded and st.button('View result'):
if st.session_state.filename is None:
st.error("Please upload an image before viewing the result.")
else:
st.success('Image analyzed')
st.session_state.page = 'result'
st.rerun()
def result_page():
st.title('Analysis Result')
if 'filename' not in st.session_state or 'mask_filename' not in st.session_state:
st.error("No image or mask file found. Please upload and process an image first.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
return
col1, col2 = st.columns(2)
# Display original image
original_img_path = os.path.join(UPLOAD_DIR, st.session_state.filename)
if os.path.exists(original_img_path):
original_img = Image.open(original_img_path)
col1.image(original_img, caption='Original Image', use_column_width=True)
else:
col1.error(f"Original image file not found: {original_img_path}")
# Display predicted mask
mask_path = st.session_state.mask_filename
if os.path.exists(mask_path):
mask = Image.open(mask_path)
col2.image(mask, caption='Predicted Mask', use_column_width=True)
else:
col2.error(f"Predicted mask file not found: {mask_path}")
st.subheader("Overlay with Area of Buildings (sqft)")
# Display overlayed image
if os.path.exists(original_img_path) and os.path.exists(mask_path):
original_np = cv2.imread(original_img_path)
mask_np = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
# Ensure mask is binary
_, mask_np = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Resize mask to match original image size if necessary
if original_np.shape[:2] != mask_np.shape[:2]:
mask_np = cv2.resize(mask_np, (original_np.shape[1], original_np.shape[0]))
# Process and overlay image
overlay_img = process_and_overlay_image(original_np, mask_np, 'output.png')
st.image(overlay_img, caption='Overlay Image', use_column_width=True)
else:
st.error("Image or mask file not found for overlay.")
if st.button('Back to Upload'):
reset_state()
st.rerun()
def main():
st.title('Building area estimation')
if 'page' not in st.session_state:
st.session_state.page = 'upload'
if st.session_state.page == 'upload':
upload_page()
elif st.session_state.page == 'result':
result_page()
if __name__ == '__main__':
main()