allenpark commited on
Commit
f14501f
·
verified ·
1 Parent(s): 08495cc

remove commented out code from previous HF model creation attempt

Browse files
Files changed (1) hide show
  1. app.py +0 -51
app.py CHANGED
@@ -9,33 +9,12 @@ import re
9
 
10
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
11
  LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None)
12
- # if torch.cuda.is_available():
13
- # device = "cuda:0"
14
- # else:
15
- # device = "cpu"
16
 
17
- # Set up client to call inference
18
  client=openai.OpenAI(
19
  base_url="https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/",
20
  api_key=LEPTON_API_TOKEN
21
  )
22
 
23
- # Create own model
24
- # tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
25
- # model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
26
- # model.gradient_checkpointing_enable()
27
-
28
- # def load_model_and_tokenizer(model_choice):
29
- # if model_choice == "Patronus Lynx 8B":
30
- # model_name = "PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"
31
- # else:
32
- # model_name = "PatronusAI/Llama-3-Patronus-Lynx-70B-Instruct"
33
-
34
- # tokenizer = AutoTokenizer.from_pretrained(model_name)
35
- # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto").to(device)
36
- # model.gradient_checkpointing_enable()
37
- # return tokenizer, model
38
-
39
  PROMPT = """
40
  Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
41
 
@@ -95,10 +74,7 @@ def clean_json_string(json_str):
95
 
96
  return json_str
97
 
98
- # @spaces.GPU()
99
- # def model_call(question, document, answer, tokenizer, model):
100
  def model_call(question, document, answer):
101
- # device = next(model.parameters()).device
102
  NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
103
  print("ENTIRE NEW_FORMAT", NEW_FORMAT)
104
  response = client.completions.create(
@@ -112,29 +88,8 @@ def model_call(question, document, answer):
112
  print("type of GENERATED TEXT", type(generated_text))
113
  reasoning = generated_text["REASONING"][0]
114
  score = generated_text["SCORE"]
115
- # inputs = tokenizer(NEW_FORMAT, return_tensors="pt")
116
- # print("INPUTS", inputs)
117
- # input_ids = inputs.input_ids
118
- # attention_mask = inputs.attention_mask
119
- # generate_kwargs = dict(
120
- # input_ids=input_ids,
121
- # do_sample=True,
122
- # attention_mask=attention_mask,
123
- # pad_token_id=tokenizer.eos_token_id,
124
- # )
125
- # print("GENERATE_KWARGS", generate_kwargs)
126
- # with torch.no_grad():
127
- # outputs = model.generate(**generate_kwargs)
128
- # print("OUTPUTS", outputs)
129
- # generated_text = tokenizer.decode(outputs[0])
130
- # print(generated_text)
131
  return reasoning, score
132
 
133
- # def update_model(model_choice, tokenizer_state, model_state):
134
- # new_tokenizer, new_model = load_model_and_tokenizer(model_choice)
135
- # print("UPDATED MODEL", new_tokenizer, new_model)
136
- # return new_tokenizer, new_model
137
-
138
  inputs = [
139
  gr.Textbox(label="Question"),
140
  gr.Textbox(label="Document"),
@@ -145,14 +100,10 @@ outputs = [
145
  gr.Textbox(label="Score")
146
  ]
147
 
148
- # submit_button = gr.Button("Submit")
149
-
150
  with gr.Blocks() as demo:
151
  gr.Markdown(HEADER)
152
  # gr.Interface(fn=model_call, inputs=inputs, outputs=outputs)
153
 
154
- # tokenizer_state = gr.State()
155
- # model_state = gr.State()
156
  with gr.Column(scale=1):
157
  question = gr.Textbox(label="Question")
158
  document = gr.Textbox(label="Document")
@@ -167,6 +118,4 @@ with gr.Blocks() as demo:
167
 
168
  submit_button.click(fn=model_call, inputs=[question, document, answer], outputs=[reasoning, score])
169
 
170
- # initial_tokenizer, initial_model = load_model_and_tokenizer("Patronus Lynx 8B")
171
- # demo.load(fn=lambda: (initial_tokenizer, initial_model), outputs=[tokenizer_state, model_state])
172
  demo.launch()
 
9
 
10
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
11
  LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None)
 
 
 
 
12
 
 
13
  client=openai.OpenAI(
14
  base_url="https://yb15a7dy-lynx-70b.tin.lepton.run/api/v1/",
15
  api_key=LEPTON_API_TOKEN
16
  )
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  PROMPT = """
19
  Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
20
 
 
74
 
75
  return json_str
76
 
 
 
77
  def model_call(question, document, answer):
 
78
  NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
79
  print("ENTIRE NEW_FORMAT", NEW_FORMAT)
80
  response = client.completions.create(
 
88
  print("type of GENERATED TEXT", type(generated_text))
89
  reasoning = generated_text["REASONING"][0]
90
  score = generated_text["SCORE"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  return reasoning, score
92
 
 
 
 
 
 
93
  inputs = [
94
  gr.Textbox(label="Question"),
95
  gr.Textbox(label="Document"),
 
100
  gr.Textbox(label="Score")
101
  ]
102
 
 
 
103
  with gr.Blocks() as demo:
104
  gr.Markdown(HEADER)
105
  # gr.Interface(fn=model_call, inputs=inputs, outputs=outputs)
106
 
 
 
107
  with gr.Column(scale=1):
108
  question = gr.Textbox(label="Question")
109
  document = gr.Textbox(label="Document")
 
118
 
119
  submit_button.click(fn=model_call, inputs=[question, document, answer], outputs=[reasoning, score])
120
 
 
 
121
  demo.launch()