Spaces:
Running
Running
import os | |
from dotenv import load_dotenv | |
from fastapi import FastAPI, HTTPException, Request | |
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse | |
from pydantic import BaseModel | |
import httpx | |
import hashlib | |
from functools import lru_cache | |
from pathlib import Path # Import Path from pathlib | |
import requests | |
import re | |
import cloudscraper | |
import json | |
from typing import Optional | |
import datetime | |
import time | |
from usage_tracker import UsageTracker | |
from starlette.middleware.base import BaseHTTPMiddleware | |
from collections import defaultdict | |
from fastapi import Security #new | |
from fastapi import Depends | |
from fastapi.security import APIKeyHeader | |
from starlette.exceptions import HTTPException | |
from starlette.status import HTTP_403_FORBIDDEN | |
# API key header scheme | |
api_key_header = APIKeyHeader(name="Authorization", auto_error=False) | |
# Function to validate API key | |
async def verify_api_key(api_key: str = Security(api_key_header)) -> bool: | |
if not api_key: | |
raise HTTPException( | |
status_code=HTTP_403_FORBIDDEN, | |
detail="No API key provided" | |
) | |
# Clean the API key by removing 'Bearer ' if present | |
if api_key.startswith('Bearer '): | |
api_key = api_key[7:] # Remove 'Bearer ' prefix | |
# Get API keys from environment | |
api_keys_str = os.getenv('API_KEYS') | |
if not api_keys_str: | |
raise HTTPException( | |
status_code=HTTP_403_FORBIDDEN, | |
detail="API keys not configured on server" | |
) | |
valid_api_keys = api_keys_str.split(',') | |
# Check if the provided key is valid | |
if api_key not in valid_api_keys: | |
raise HTTPException( | |
status_code=HTTP_403_FORBIDDEN, | |
detail="Invalid API key" | |
) | |
return True | |
class RateLimitMiddleware(BaseHTTPMiddleware): | |
def __init__(self, app, requests_per_second: int = 2): | |
super().__init__(app) | |
self.requests_per_second = requests_per_second | |
self.last_request_time = defaultdict(float) | |
self.tokens = defaultdict(lambda: requests_per_second) | |
self.last_update = defaultdict(float) | |
async def dispatch(self, request: Request, call_next): | |
client_ip = request.client.host | |
current_time = time.time() | |
# Update tokens | |
time_passed = current_time - self.last_update[client_ip] | |
self.last_update[client_ip] = current_time | |
self.tokens[client_ip] = min( | |
self.requests_per_second, | |
self.tokens[client_ip] + time_passed * self.requests_per_second | |
) | |
# Check if request can be processed | |
if self.tokens[client_ip] < 1: | |
return JSONResponse( | |
status_code=429, | |
content={ | |
"detail": "Too many requests. Please try again later.", | |
"retry_after": round((1 - self.tokens[client_ip]) / self.requests_per_second) | |
} | |
) | |
# Consume a token | |
self.tokens[client_ip] -= 1 | |
# Process the request | |
response = await call_next(request) | |
return response | |
usage_tracker = UsageTracker() | |
load_dotenv() #idk why this shi | |
app = FastAPI() | |
app.add_middleware(RateLimitMiddleware, requests_per_second=2) | |
# Get API keys and secret endpoint from environment variables | |
# valid_api_keys = api_keys_str.split(',') if api_keys_str else [] | |
secret_api_endpoint = os.getenv('SECRET_API_ENDPOINT') | |
secret_api_endpoint_2 = os.getenv('SECRET_API_ENDPOINT_2') | |
secret_api_endpoint_3 = os.getenv('SECRET_API_ENDPOINT_3') # New endpoint for searchgpt | |
image_endpoint = os.getenv("IMAGE_ENDPOINT") | |
ENDPOINT_ORIGIN = os.getenv('ENDPOINT_ORIGIN') | |
# Validate if the main secret API endpoints are set | |
if not secret_api_endpoint or not secret_api_endpoint_2 or not secret_api_endpoint_3: | |
raise HTTPException(status_code=500, detail="API endpoint(s) are not configured in environment variables.") | |
# Define models that should use the secondary endpoint | |
# alternate_models = {"gpt-4o-mini", "claude-3-haiku", "llama-3.1-70b", "mixtral-8x7b"} | |
available_model_ids = [] | |
class Payload(BaseModel): | |
model: str | |
messages: list | |
stream: bool = False | |
async def favicon(): | |
# The favicon.ico file is in the same directory as the app | |
favicon_path = Path(__file__).parent / "favicon.ico" | |
return FileResponse(favicon_path, media_type="image/x-icon") | |
def generate_search(query: str, systemprompt: Optional[str] = None, stream: bool = True) -> str: | |
headers = {"User-Agent": ""} | |
# Use the provided system prompt, or default to "Be Helpful and Friendly" | |
system_message = systemprompt or "Be Helpful and Friendly" | |
# Create the prompt history with the user query and system message | |
prompt = [ | |
{"role": "user", "content": query}, | |
] | |
prompt.insert(0, {"content": system_message, "role": "system"}) | |
# Prepare the payload for the API request | |
payload = { | |
"is_vscode_extension": True, | |
"message_history": prompt, | |
"requested_model": "searchgpt", | |
"user_input": prompt[-1]["content"], | |
} | |
# Send the request to the chat endpoint | |
response = requests.post(secret_api_endpoint_3, headers=headers, json=payload, stream=True) | |
streaming_text = "" | |
# Process the streaming response | |
for value in response.iter_lines(decode_unicode=True): | |
if value.startswith("data: "): | |
try: | |
json_modified_value = json.loads(value[6:]) | |
content = json_modified_value.get("choices", [{}])[0].get("delta", {}).get("content", "") | |
if content.strip(): # Only process non-empty content | |
cleaned_response = { | |
"created": json_modified_value.get("created"), | |
"id": json_modified_value.get("id"), | |
"model": "searchgpt", | |
"object": "chat.completion", | |
"choices": [ | |
{ | |
"message": { | |
"content": content | |
} | |
} | |
] | |
} | |
if stream: | |
yield f"data: {json.dumps(cleaned_response)}\n\n" | |
streaming_text += content | |
except json.JSONDecodeError: | |
continue | |
if not stream: | |
yield streaming_text | |
async def ping(): | |
start_time = datetime.datetime.now() | |
response_time = (datetime.datetime.now() - start_time).total_seconds() | |
return {"message": "pong", "response_time": f"{response_time:.6f} seconds"} | |
async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None,authenticated: bool = Depends(verify_api_key)): | |
if not q: | |
raise HTTPException(status_code=400, detail="Query parameter 'q' is required") | |
usage_tracker.record_request(endpoint="/searchgpt") | |
if stream: | |
return StreamingResponse( | |
generate_search(q, systemprompt=systemprompt, stream=True), | |
media_type="text/event-stream" | |
) | |
else: | |
# For non-streaming, collect the text and return as JSON response | |
response_text = "".join([chunk for chunk in generate_search(q, systemprompt=systemprompt, stream=False)]) | |
return JSONResponse(content={"response": response_text}) | |
async def root(): | |
# Open and read the content of index.html (in the same folder as the app) | |
file_path = "index.html" | |
try: | |
with open(file_path, "r") as file: | |
html_content = file.read() | |
return HTMLResponse(content=html_content) | |
except FileNotFoundError: | |
return HTMLResponse(content="<h1>File not found</h1>", status_code=404) | |
async def get_models(): | |
try: | |
# Load the models from models.json in the same folder | |
file_path = Path(__file__).parent / 'models.json' | |
with open(file_path, 'r') as f: | |
return json.load(f) | |
except FileNotFoundError: | |
raise HTTPException(status_code=404, detail="models.json not found") | |
except json.JSONDecodeError: | |
raise HTTPException(status_code=500, detail="Error decoding models.json") | |
async def return_models(): | |
return await get_models() | |
server_status = True | |
async def get_completion(payload: Payload, request: Request,authenticated: bool = Depends(verify_api_key)): | |
# Check server status | |
model_to_use = payload.model if payload.model else "gpt-4o-mini" | |
# Validate model availability | |
if model_to_use not in available_model_ids: | |
raise HTTPException( | |
status_code=400, | |
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list." | |
) | |
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions") | |
# Prepare payload | |
payload_dict = payload.dict() | |
payload_dict["model"] = model_to_use | |
# payload_dict["stream"] = payload_dict.get("stream", False) | |
# Select the appropriate endpoint | |
endpoint = secret_api_endpoint | |
# Current time and IP logging | |
current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p") | |
aaip = request.client.host | |
print(f"Time: {current_time}, {aaip} , {model_to_use}, server status :- {server_status}") | |
print(payload_dict) | |
if not server_status: | |
return JSONResponse( | |
status_code=503, | |
content={"message": "Server is under maintenance. Please try again later."} | |
) | |
scraper = cloudscraper.create_scraper() | |
async def stream_generator(payload_dict): | |
# Prepare custom headers | |
custom_headers = { | |
'DNT': '1', | |
# 'Origin': ENDPOINT_ORIGIN, | |
'Priority': 'u=1, i', | |
# 'Referer': ENDPOINT_ORIGIN | |
} | |
try: | |
# Send POST request using CloudScraper with custom headers | |
response = scraper.post( | |
f"{endpoint}/v1/chat/completions", | |
json=payload_dict, | |
headers=custom_headers, | |
stream=True | |
) | |
# Error handling remains the same as in previous version | |
if response.status_code == 422: | |
raise HTTPException(status_code=422, detail="Unprocessable entity. Check your payload.") | |
elif response.status_code == 400: | |
raise HTTPException(status_code=400, detail="Bad request. Verify input data.") | |
elif response.status_code == 403: | |
raise HTTPException(status_code=403, detail="Forbidden. You do not have access to this resource.") | |
elif response.status_code == 404: | |
raise HTTPException(status_code=404, detail="The requested resource was not found.") | |
elif response.status_code >= 500: | |
raise HTTPException(status_code=500, detail="Server error. Try again later.") | |
# Stream response lines to the client | |
for line in response.iter_lines(): | |
if line: | |
yield line.decode('utf-8') + "\n" | |
except requests.exceptions.RequestException as req_err: | |
# Handle request-specific errors | |
print(response.text) | |
raise HTTPException(status_code=500, detail=f"Request failed: {req_err}") | |
except Exception as e: | |
# Handle unexpected errors | |
print(response.text) | |
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}") | |
return StreamingResponse(stream_generator(payload_dict), media_type="application/json") | |
# Remove the duplicated endpoint and combine the functionality | |
# Support both GET and POST | |
async def generate_image( | |
prompt: Optional[str] = None, | |
model: str = "flux", # Default model | |
seed: Optional[int] = None, | |
width: Optional[int] = None, | |
height: Optional[int] = None, | |
nologo: Optional[bool] = True, | |
private: Optional[bool] = None, | |
enhance: Optional[bool] = None, | |
request: Request = None, # Access raw POST data | |
authenticated: bool = Depends(verify_api_key) | |
): | |
""" | |
Generate an image using the Image Generation API. | |
""" | |
# Validate the image endpoint | |
if not image_endpoint: | |
raise HTTPException(status_code=500, detail="Image endpoint not configured in environment variables.") | |
usage_tracker.record_request(endpoint="/images/generations") | |
# Handle GET and POST prompts | |
if request.method == "POST": | |
try: | |
body = await request.json() # Parse JSON body | |
prompt = body.get("prompt", "").strip() | |
if not prompt: | |
raise HTTPException(status_code=400, detail="Prompt cannot be empty") | |
except Exception: | |
raise HTTPException(status_code=400, detail="Invalid JSON payload") | |
elif request.method == "GET": | |
if not prompt or not prompt.strip(): | |
raise HTTPException(status_code=400, detail="Prompt cannot be empty") | |
prompt = prompt.strip() | |
# Sanitize and encode the prompt | |
encoded_prompt = httpx.QueryParams({'prompt': prompt}).get('prompt') | |
# Construct the URL with the encoded prompt | |
base_url = image_endpoint.rstrip('/') # Remove trailing slash if present | |
url = f"{base_url}/{encoded_prompt}" | |
# Prepare query parameters with validation | |
params = {} | |
if model and isinstance(model, str): | |
params['model'] = model | |
if seed is not None and isinstance(seed, int): | |
params['seed'] = seed | |
if width is not None and isinstance(width, int) and 64 <= width <= 2048: | |
params['width'] = width | |
if height is not None and isinstance(height, int) and 64 <= height <= 2048: | |
params['height'] = height | |
if nologo is not None: | |
params['nologo'] = str(nologo).lower() | |
if private is not None: | |
params['private'] = str(private).lower() | |
if enhance is not None: | |
params['enhance'] = str(enhance).lower() | |
try: | |
timeout = httpx.Timeout(60.0) # Set a reasonable timeout | |
async with httpx.AsyncClient(timeout=timeout) as client: | |
response = await client.get(url, params=params, follow_redirects=True) | |
# Check for various error conditions | |
if response.status_code == 404: | |
raise HTTPException(status_code=404, detail="Image generation service not found") | |
elif response.status_code == 400: | |
raise HTTPException(status_code=400, detail="Invalid parameters provided to image service") | |
elif response.status_code == 429: | |
raise HTTPException(status_code=429, detail="Too many requests to image service") | |
elif response.status_code != 200: | |
raise HTTPException( | |
status_code=response.status_code, | |
detail=f"Image generation failed with status code {response.status_code}" | |
) | |
# Verify content type | |
content_type = response.headers.get('content-type', '') | |
if not content_type.startswith('image/'): | |
raise HTTPException( | |
status_code=500, | |
detail=f"Unexpected content type received: {content_type}" | |
) | |
return StreamingResponse( | |
response.iter_bytes(), | |
media_type=content_type, | |
headers={ | |
'Cache-Control': 'no-cache', | |
'Pragma': 'no-cache' | |
} | |
) | |
except httpx.TimeoutException: | |
raise HTTPException(status_code=504, detail="Image generation request timed out") | |
except httpx.RequestError as e: | |
raise HTTPException(status_code=500, detail=f"Failed to contact image service: {str(e)}") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Unexpected error during image generation: {str(e)}") | |
async def playground(): | |
# Open and read the content of playground.html (in the same folder as the app) | |
file_path = "playground.html" | |
try: | |
with open(file_path, "r") as file: | |
html_content = file.read() | |
return HTMLResponse(content=html_content) | |
except FileNotFoundError: | |
return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404) | |
def load_model_ids(json_file_path): | |
try: | |
with open(json_file_path, 'r') as f: | |
models_data = json.load(f) | |
# Extract 'id' from each model object | |
model_ids = [model['id'] for model in models_data if 'id' in model] | |
return model_ids | |
except FileNotFoundError: | |
print("Error: models.json file not found.") | |
return [] | |
except json.JSONDecodeError: | |
print("Error: Invalid JSON format in models.json.") | |
return [] | |
async def get_usage(days: int = 7): | |
"""Retrieve usage statistics""" | |
return usage_tracker.get_usage_summary(days) | |
async def usage_page(): | |
"""Serve an HTML page showing usage statistics""" | |
# Retrieve usage data | |
usage_data = usage_tracker.get_usage_summary() | |
# Model Usage Table Rows | |
model_usage_rows = "\n".join([ | |
f""" | |
<tr> | |
<td>{model}</td> | |
<td>{model_data['total_requests']}</td> | |
<td>{model_data['first_used']}</td> | |
<td>{model_data['last_used']}</td> | |
</tr> | |
""" for model, model_data in usage_data['models'].items() | |
]) | |
# API Endpoint Usage Table Rows | |
api_usage_rows = "\n".join([ | |
f""" | |
<tr> | |
<td>{endpoint}</td> | |
<td>{endpoint_data['total_requests']}</td> | |
<td>{endpoint_data['first_used']}</td> | |
<td>{endpoint_data['last_used']}</td> | |
</tr> | |
""" for endpoint, endpoint_data in usage_data['api_endpoints'].items() | |
]) | |
# Daily Usage Table Rows | |
daily_usage_rows = "\n".join([ | |
"\n".join([ | |
f""" | |
<tr> | |
<td>{date}</td> | |
<td>{entity}</td> | |
<td>{requests}</td> | |
</tr> | |
""" for entity, requests in date_data.items() | |
]) for date, date_data in usage_data['recent_daily_usage'].items() | |
]) | |
html_content = f""" | |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<title>Lokiai AI - Usage Statistics</title> | |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet"> | |
<style> | |
:root {{ | |
--bg-dark: #0f1011; | |
--bg-darker: #070708; | |
--text-primary: #e6e6e6; | |
--text-secondary: #8c8c8c; | |
--border-color: #2c2c2c; | |
--accent-color: #3a6ee0; | |
--accent-hover: #4a7ef0; | |
}} | |
body {{ | |
font-family: 'Inter', sans-serif; | |
background-color: var(--bg-dark); | |
color: var(--text-primary); | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 40px 20px; | |
line-height: 1.6; | |
}} | |
.logo {{ | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
margin-bottom: 30px; | |
}} | |
.logo h1 {{ | |
font-weight: 600; | |
font-size: 2.5em; | |
color: var(--text-primary); | |
margin-left: 15px; | |
}} | |
.logo img {{ | |
width: 60px; | |
height: 60px; | |
border-radius: 10px; | |
}} | |
.container {{ | |
background-color: var(--bg-darker); | |
border-radius: 12px; | |
padding: 30px; | |
box-shadow: 0 15px 40px rgba(0,0,0,0.3); | |
border: 1px solid var(--border-color); | |
}} | |
h2, h3 {{ | |
color: var(--text-primary); | |
border-bottom: 2px solid var(--border-color); | |
padding-bottom: 10px; | |
font-weight: 500; | |
}} | |
.total-requests {{ | |
background-color: var(--accent-color); | |
color: white; | |
text-align: center; | |
padding: 15px; | |
border-radius: 8px; | |
margin-bottom: 30px; | |
font-weight: 600; | |
letter-spacing: -0.5px; | |
}} | |
table {{ | |
width: 100%; | |
border-collapse: separate; | |
border-spacing: 0; | |
margin-bottom: 30px; | |
background-color: var(--bg-dark); | |
border-radius: 8px; | |
overflow: hidden; | |
}} | |
th, td {{ | |
border: 1px solid var(--border-color); | |
padding: 12px; | |
text-align: left; | |
transition: background-color 0.3s ease; | |
}} | |
th {{ | |
background-color: #1e1e1e; | |
color: var(--text-primary); | |
font-weight: 600; | |
text-transform: uppercase; | |
font-size: 0.9em; | |
}} | |
tr:nth-child(even) {{ | |
background-color: rgba(255,255,255,0.05); | |
}} | |
tr:hover {{ | |
background-color: rgba(62,100,255,0.1); | |
}} | |
@media (max-width: 768px) {{ | |
.container {{ | |
padding: 15px; | |
}} | |
table {{ | |
font-size: 0.9em; | |
}} | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="container"> | |
<div class="logo"> | |
<img src="" alt="Lokai AI Logo"> | |
<h1>Lokiai AI</h1> | |
</div> | |
<div class="total-requests"> | |
Total API Requests: {usage_data['total_requests']} | |
</div> | |
<h2>Model Usage</h2> | |
<table> | |
<tr> | |
<th>Model</th> | |
<th>Total Requests</th> | |
<th>First Used</th> | |
<th>Last Used</th> | |
</tr> | |
{model_usage_rows} | |
</table> | |
<h2>API Endpoint Usage</h2> | |
<table> | |
<tr> | |
<th>Endpoint</th> | |
<th>Total Requests</th> | |
<th>First Used</th> | |
<th>Last Used</th> | |
</tr> | |
{api_usage_rows} | |
</table> | |
<h2>Daily Usage (Last 7 Days)</h2> | |
<table> | |
<tr> | |
<th>Date</th> | |
<th>Entity</th> | |
<th>Requests</th> | |
</tr> | |
{daily_usage_rows} | |
</table> | |
</div> | |
</body> | |
</html> | |
""" | |
return HTMLResponse(content=html_content) | |
async def get_meme(): | |
try: | |
response = requests.get("https://meme-api.com/gimme") | |
response_data = response.json() | |
meme_url = response_data.get("url") | |
if meme_url: | |
def stream_image(): | |
with requests.get(meme_url, stream=True) as image_response: | |
for chunk in image_response.iter_content(chunk_size=1024): | |
yield chunk | |
return StreamingResponse(stream_image(), media_type="image/png") | |
else: | |
raise HTTPException(status_code=404, detail="No mimi found :(") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def startup_event(): | |
global available_model_ids | |
available_model_ids = load_model_ids("models.json") | |
print(f"Loaded model IDs: {available_model_ids}") | |
print("API endpoints:") | |
print("GET /") | |
print("GET /models") | |
print("GET /searchgpt") | |
print("POST /chat/completions") | |
print("GET /images/generations") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |