Spaces:
Running
Running
File size: 35,841 Bytes
4986fe4 342885c 74e8abb 1f0a039 74e8abb 1f0a039 396b35b 1f0a039 396b35b 1f0a039 a06f1b3 1f0a039 c3d5a54 dc21031 1f0a039 c3d5a54 a06f1b3 1f0a039 4986fe4 1f0a039 c3d5a54 1f0a039 396b35b 1f0a039 396b35b 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 396b35b 20b41cb 1f0a039 9b57c30 1095c7f bd8dd87 1095c7f c2e84c8 378f2c3 1f0a039 49e4129 1f0a039 ab07513 f2d8224 1f0a039 378f2c3 1f0a039 16f4d5b c3d5a54 1f0a039 ab07513 1f0a039 ab07513 1f0a039 c3d5a54 1f0a039 396b35b ab07513 1f0a039 396b35b 1f0a039 b2ec9cb 1f0a039 b2ec9cb 1f0a039 b2ec9cb 1f0a039 b2ec9cb 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 c3d5a54 1f0a039 396b35b 1f0a039 396b35b c3d5a54 396b35b c3d5a54 1f0a039 ab07513 1f0a039 396b35b 1f0a039 396b35b 1f0a039 396b35b 1f0a039 396b35b a01be99 1f0a039 74e8abb 1f0a039 c3d5a54 1f0a039 74e8abb 1f0a039 74e8abb 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 796bb21 1f0a039 9b460f3 74e8abb 1f0a039 74e8abb 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 1f0a039 9b460f3 c3d5a54 1f0a039 74e8abb 1f0a039 c3d5a54 ab07513 c3d5a54 ab07513 1f0a039 ab07513 c3d5a54 396b35b 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 ab07513 c3d5a54 396b35b 1f0a039 c3d5a54 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 de98206 1f0a039 74e8abb 1f0a039 396b35b eefae44 de98206 1f0a039 ab07513 1f0a039 74e8abb 1f0a039 c3d5a54 1f0a039 de98206 1f0a039 9b57c30 1f0a039 de98206 1f0a039 ab07513 1f0a039 74e8abb 1f0a039 1d32d66 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 1d32d66 1f0a039 c3d5a54 1f0a039 8ef5ca7 1f0a039 4bcb2c2 1f0a039 4bcb2c2 8ef5ca7 4bcb2c2 1f0a039 ab07513 1f0a039 4bcb2c2 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 74e8abb 1f0a039 ab07513 1f0a039 ab07513 1f0a039 396b35b 1f0a039 396b35b 1f0a039 ea75284 1f0a039 ea75284 1f0a039 314966f 1f0a039 314966f 1f0a039 ab07513 1f0a039 314966f 1f0a039 314966f 1f0a039 ab07513 1f0a039 314966f 1f0a039 ab07513 ea75284 4f22928 c20175b ea75284 c20175b 1f0a039 c20175b 1f0a039 ea75284 c20175b 1f0a039 c20175b ab07513 c20175b 1f0a039 c20175b ab07513 c20175b 1f0a039 c20175b ab07513 c20175b 1f0a039 c20175b ab07513 1f0a039 c20175b 1f0a039 c20175b ea75284 396b35b 1f0a039 396b35b 1f0a039 396b35b 1f0a039 2ab4453 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 4bcb2c2 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 ab07513 1f0a039 4bcb2c2 1f0a039 c3d5a54 7ef5d89 72b5133 1f0a039 c3d5a54 1f0a039 9b57c30 1f0a039 9b57c30 ab07513 1f0a039 9b57c30 ab07513 9b57c30 1f0a039 ab07513 1f0a039 ab07513 1f0a039 9b57c30 6a84e5c 1f0a039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 |
import os
import re
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, Depends, Security
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
import httpx
from functools import lru_cache
from pathlib import Path
import json
import datetime
import time
import threading
from typing import Optional, Dict, List, Any, Generator
import asyncio
from starlette.status import HTTP_403_FORBIDDEN
import cloudscraper
from concurrent.futures import ThreadPoolExecutor
import uvloop
from fastapi.middleware.gzip import GZipMiddleware
from starlette.middleware.cors import CORSMiddleware
import contextlib
import requests
# Enable uvloop for faster event loop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
# Thread pool for CPU-bound operations
executor = ThreadPoolExecutor(max_workers=16) # Increased thread count for better parallelism
# Load environment variables once at startup
load_dotenv()
# API key security scheme
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
# Initialize usage tracker
from usage_tracker import UsageTracker
usage_tracker = UsageTracker()
app = FastAPI()
# Add middleware for compression and CORS
app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Environment variables (cached)
@lru_cache(maxsize=1)
def get_env_vars():
return {
'api_keys': os.getenv('API_KEYS', '').split(','),
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
'secret_api_endpoint_4': "https://text.pollinations.ai/openai",
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), # Added new endpoint
'mistral_api': "https://api.mistral.ai",
'mistral_key': os.getenv('MISTRAL_KEY'),
'endpoint_origin': os.getenv('ENDPOINT_ORIGIN')
}
# Configuration for models - use sets for faster lookups
mistral_models = {
"mistral-large-latest",
"pixtral-large-latest",
"mistral-moderation-latest",
"ministral-3b-latest",
"ministral-8b-latest",
"open-mistral-nemo",
"mistral-small-latest",
"mistral-saba-latest",
"codestral-latest"
}
pollinations_models = {
"openai",
"openai-large",
"openai-xlarge",
"openai-reasoning",
"qwen-coder",
"llama",
"mistral",
"searchgpt",
"deepseek",
"claude-hybridspace",
"deepseek-r1",
"deepseek-reasoner",
"llamalight",
"gemini",
"gemini-thinking",
"hormoz",
"phi",
"phi-mini",
"openai-audio",
"llama-scaleway"
}
alternate_models = {
"o1",
"llama-4-scout",
"o4-mini",
"sonar",
"sonar-pro",
"sonar-reasoning",
"sonar-reasoning-pro",
"grok-3",
"grok-3-fast",
"r1-1776",
"o3"
}
claude_3_models = { # Models for the new endpoint
"claude-3-7-sonnet",
"claude-3-7-sonnet-thinking",
"claude 3.5 haiku",
"claude 3.5 sonnet",
"claude 3.5 haiku",
"o3-mini-medium",
"o3-mini-high",
"grok-3",
"grok-3-thinking",
"grok 2"
}
# Supported image generation models
supported_image_models = {
"Flux Pro Ultra",
"grok-2-aurora",
"Flux Pro",
"Flux Pro Ultra Raw",
"Flux Dev",
"Flux Schnell",
"stable-diffusion-3-large-turbo",
"Flux Realism",
"stable-diffusion-ultra",
"dall-e-3",
"sdxl-lightning-4step"
}
# Request payload model
class Payload(BaseModel):
model: str
messages: list
stream: bool = False
# Image generation payload model
class ImageGenerationPayload(BaseModel):
model: str
prompt: str
size: int
number: int
# Server status global variable
server_status = True
available_model_ids: List[str] = []
# Create a reusable httpx client pool with connection pooling
@lru_cache(maxsize=1)
def get_async_client():
return httpx.AsyncClient(
timeout=60.0,
limits=httpx.Limits(max_keepalive_connections=50, max_connections=200) # Increased limits
)
# Create a cloudscraper pool
scraper_pool = []
MAX_SCRAPERS = 20 # Increased pool size
def get_scraper():
if not scraper_pool:
for _ in range(MAX_SCRAPERS):
scraper_pool.append(cloudscraper.create_scraper())
return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS] # Simple round-robin
# API key validation - optimized to avoid string operations when possible
async def verify_api_key(
request: Request,
api_key: str = Security(api_key_header)
) -> bool:
# Allow bypass if the referer is from /playground or /image-playground
referer = request.headers.get("referer", "")
if referer.startswith(("https://parthsadaria-lokiai.hf.space/playground",
"https://parthsadaria-lokiai.hf.space/image-playground")):
return True
if not api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="No API key provided"
)
# Only clean if needed
if api_key.startswith('Bearer '):
api_key = api_key[7:] # Remove 'Bearer ' prefix
# Get API keys from environment
valid_api_keys = get_env_vars().get('api_keys', [])
if not valid_api_keys or valid_api_keys == ['']:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="API keys not configured on server"
)
# Fast check with set operation
if api_key not in set(valid_api_keys):
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="Invalid API key"
)
return True
# Pre-load and cache models.json
@lru_cache(maxsize=1)
def load_models_data():
try:
file_path = Path(__file__).parent / 'models.json'
with open(file_path, 'r') as f:
return json.load(f)
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading models.json: {str(e)}")
return []
# Async wrapper for models data
async def get_models():
models_data = load_models_data()
if not models_data:
raise HTTPException(status_code=500, detail="Error loading available models")
return models_data
# Enhanced async streaming - now with real-time SSE support
async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True):
# Create a streaming response channel using asyncio.Queue
queue = asyncio.Queue()
async def _fetch_search_data():
try:
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
# Use the provided system prompt, or default to "Be Helpful and Friendly"
system_message = systemprompt or "Be Helpful and Friendly"
# Create the prompt history
prompt = [
{"role": "user", "content": query},
]
prompt.insert(0, {"content": system_message, "role": "system"})
# Prepare the payload for the API request
payload = {
"is_vscode_extension": True,
"message_history": prompt,
"requested_model": "searchgpt",
"user_input": prompt[-1]["content"],
}
# Get endpoint from environment
secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3']
if not secret_api_endpoint_3:
await queue.put({"error": "Search API endpoint not configured"})
return
# Use AsyncClient for better performance
async with httpx.AsyncClient(timeout=30.0) as client:
async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response:
if response.status_code != 200:
await queue.put({"error": f"Search API returned status code {response.status_code}"})
return
# Process the streaming response in real-time
buffer = ""
async for line in response.aiter_lines():
if line.startswith("data: "):
try:
json_data = json.loads(line[6:])
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content.strip():
cleaned_response = {
"created": json_data.get("created"),
"id": json_data.get("id"),
"model": "searchgpt",
"object": "chat.completion",
"choices": [
{
"message": {
"content": content
}
}
]
}
# Send to queue immediately for streaming
await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content})
except json.JSONDecodeError:
continue
# Signal completion
await queue.put(None)
except Exception as e:
await queue.put({"error": str(e)})
await queue.put(None)
# Start the fetch process
asyncio.create_task(_fetch_search_data())
# Return the queue for consumption
return queue
# Cache for frequently accessed static files
@lru_cache(maxsize=10)
def read_html_file(file_path):
try:
with open(file_path, "r") as file:
return file.read()
except FileNotFoundError:
return None
# Basic routes
@app.get("/favicon.ico")
async def favicon():
favicon_path = Path(__file__).parent / "favicon.ico"
return FileResponse(favicon_path, media_type="image/x-icon")
@app.get("/banner.jpg")
async def favicon():
favicon_path = Path(__file__).parent / "banner.jpg"
return FileResponse(favicon_path, media_type="image/x-icon")
@app.get("/ping")
async def ping():
return {"message": "pong", "response_time": "0.000000 seconds"}
@app.get("/", response_class=HTMLResponse)
async def root():
html_content = read_html_file("index.html")
if html_content is None:
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
return HTMLResponse(content=html_content)
@app.get("/script.js", response_class=HTMLResponse)
async def root():
html_content = read_html_file("script.js")
if html_content is None:
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
return HTMLResponse(content=html_content)
@app.get("/style.css", response_class=HTMLResponse)
async def root():
html_content = read_html_file("style.css")
if html_content is None:
return HTMLResponse(content="<h1>File not found</h1>", status_code=404)
return HTMLResponse(content=html_content)
@app.get("/dynamo", response_class=HTMLResponse)
async def dynamic_ai_page(request: Request):
user_agent = request.headers.get('user-agent', 'Unknown User')
client_ip = request.client.host
location = f"IP: {client_ip}"
prompt = f"""
Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI"
- User-Agent: {user_agent}
- Location: {location}
- Style: Cyberpunk, minimalist, or retro
Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background.
Wrap the generated HTML in triple backticks (```).
"""
payload = {
"model": "mistral-small-latest",
"messages": [{"role": "user", "content": prompt}]
}
headers = {
"Authorization": "Bearer playground"
}
response = requests.post("https://parthsadaria-lokiai.hf.space/chat/completions", json=payload, headers=headers)
data = response.json()
# Extract HTML from ``` blocks
html_content = re.search(r"```(.*?)```", data['choices'][0]['message']['content'], re.DOTALL)
if html_content:
html_content = html_content.group(1).strip()
# Remove the first word
if html_content:
html_content = ' '.join(html_content.split(' ')[1:])
return HTMLResponse(content=html_content)
@app.get("/playground", response_class=HTMLResponse)
async def playground():
html_content = read_html_file("playground.html")
if html_content is None:
return HTMLResponse(content="<h1>playground.html not found</h1>", status_code=404)
return HTMLResponse(content=html_content)
@app.get("/image-playground", response_class=HTMLResponse)
async def playground():
html_content = read_html_file("image-playground.html")
if html_content is None:
return HTMLResponse(content="<h1>image-playground.html not found</h1>", status_code=404)
return HTMLResponse(content=html_content)
# VETRA
GITHUB_BASE = "https://raw.githubusercontent.com/Parthsadaria/Vetra/main"
FILES = {
"html": "index.html",
"css": "style.css",
"js": "script.js"
}
async def get_github_file(filename: str) -> str:
url = f"{GITHUB_BASE}/{filename}"
async with httpx.AsyncClient() as client:
res = await client.get(url)
return res.text if res.status_code == 200 else None
@app.get("/vetra", response_class=HTMLResponse)
async def serve_vetra():
html = await get_github_file(FILES["html"])
css = await get_github_file(FILES["css"])
js = await get_github_file(FILES["js"])
if not html:
return HTMLResponse(content="<h1>index.html not found on GitHub</h1>", status_code=404)
final_html = html.replace(
"</head>",
f"<style>{css or '/* CSS not found */'}</style></head>"
).replace(
"</body>",
f"<script>{js or '// JS not found'}</script></body>"
)
return HTMLResponse(content=final_html)
# Model routes
@app.get("/api/v1/models")
@app.get("/models")
async def return_models():
return await get_models()
# Search routes with enhanced real-time streaming
@app.get("/searchgpt")
async def search_gpt(q: str, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
if not q:
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
usage_tracker.record_request(endpoint="/searchgpt")
queue = await generate_search_async(q, systemprompt=systemprompt, stream=True)
if stream:
async def stream_generator():
collected_text = ""
while True:
item = await queue.get()
if item is None:
break
if "error" in item:
yield f"data: {json.dumps({'error': item['error']})}\n\n"
break
if "data" in item:
yield item["data"]
collected_text += item.get("text", "")
return StreamingResponse(
stream_generator(),
media_type="text/event-stream"
)
else:
# For non-streaming, collect all text and return at once
collected_text = ""
while True:
item = await queue.get()
if item is None:
break
if "error" in item:
raise HTTPException(status_code=500, detail=item["error"])
collected_text += item.get("text", "")
return JSONResponse(content={"response": collected_text})
# Enhanced streaming with direct SSE pass-through for real-time responses
header_url = os.getenv('HEADER_URL')
@app.post("/chat/completions")
@app.post("/api/v1/chat/completions")
async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)):
# Check server status
if not server_status:
return JSONResponse(
status_code=503,
content={"message": "Server is under maintenance. Please try again later."}
)
model_to_use = payload.model or "gpt-4o-mini"
# Validate model availability - fast lookup with set
if available_model_ids and model_to_use not in set(available_model_ids):
raise HTTPException(
status_code=400,
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
)
# Log request without blocking
asyncio.create_task(log_request(request, model_to_use))
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")
# Prepare payload
payload_dict = payload.dict()
payload_dict["model"] = model_to_use
# Ensure stream is True for real-time streaming (can be overridden by client)
stream_enabled = payload_dict.get("stream", True)
# Get environment variables
env_vars = get_env_vars()
# Select the appropriate endpoint (fast lookup with sets)
if model_to_use in mistral_models:
endpoint = env_vars['mistral_api']
custom_headers = {
"Authorization": f"Bearer {env_vars['mistral_key']}"
}
elif model_to_use in pollinations_models:
endpoint = env_vars['secret_api_endpoint_4']
custom_headers = {}
elif model_to_use in alternate_models:
endpoint = env_vars['secret_api_endpoint_2']
custom_headers = {}
elif model_to_use in claude_3_models: # Use the new endpoint
endpoint = env_vars['secret_api_endpoint_5']
custom_headers = {}
else:
endpoint = env_vars['secret_api_endpoint']
custom_headers = {
"Origin": header_url,
"Priority": "u=1, i",
"Referer": header_url
}
print(f"Using endpoint: {endpoint} for model: {model_to_use}")
# Improved real-time streaming handler
async def real_time_stream_generator():
try:
async with httpx.AsyncClient(timeout=60.0) as client:
async with client.stream("POST", f"{endpoint}/v1/chat/completions", json=payload_dict, headers=custom_headers) as response:
if response.status_code >= 400:
error_messages = {
422: "Unprocessable entity. Check your payload.",
400: "Bad request. Verify input data.",
403: "Forbidden. You do not have access to this resource.",
404: "The requested resource was not found.",
}
detail = error_messages.get(response.status_code, f"Error code: {response.status_code}")
raise HTTPException(status_code=response.status_code, detail=detail)
# Stream the response in real-time with minimal buffering
async for line in response.aiter_lines():
if line:
# Yield immediately for faster streaming
yield line + "\n"
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Request timed out")
except httpx.RequestError as e:
raise HTTPException(status_code=502, detail=f"Failed to connect to upstream API: {str(e)}")
except Exception as e:
if isinstance(e, HTTPException):
raise e
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
# Return streaming response with proper headers
if stream_enabled:
return StreamingResponse(
real_time_stream_generator(),
media_type="text/event-stream",
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no" # Disable proxy buffering for Nginx
}
)
else:
# For non-streaming requests, collect the entire response
response_content = []
async for chunk in real_time_stream_generator():
response_content.append(chunk)
return JSONResponse(content=json.loads(''.join(response_content)))
# New image generation endpoint
@app.post("/images/generations")
async def create_image(payload: ImageGenerationPayload, authenticated: bool = Depends(verify_api_key)):
"""
Endpoint for generating images based on a text prompt.
"""
# Check server status
if not server_status:
return JSONResponse(
status_code=503,
content={"message": "Server is under maintenance. Please try again later."}
)
# Validate model
if payload.model not in supported_image_models:
raise HTTPException(
status_code=400,
detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {supported_image_models}"
)
# Log the request
usage_tracker.record_request(model=payload.model, endpoint="/images/generations")
# Prepare the payload for the external API
api_payload = {
"model": payload.model,
"prompt": payload.prompt,
"size": payload.size,
"number": payload.number
}
# Target API endpoint
target_api_url = os.getenv('NEW_IMG')
try:
# Use a timeout for the image generation request
async with httpx.AsyncClient(timeout=60.0) as client:
response = await client.post(target_api_url, json=api_payload)
if response.status_code != 200:
error_detail = response.json().get("detail", f"Image generation failed with status code: {response.status_code}")
raise HTTPException(status_code=response.status_code, detail=error_detail)
# Return the response from the external API
return JSONResponse(content=response.json())
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Image generation request timed out.")
except httpx.RequestError as e:
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
# Asynchronous logging function
async def log_request(request, model):
# Get minimal data for logging
current_time = (datetime.datetime.utcnow() + datetime.timedelta(hours=5, minutes=30)).strftime("%Y-%m-%d %I:%M:%S %p")
ip_hash = hash(request.client.host) % 10000 # Hash the IP for privacy
print(f"Time: {current_time}, IP Hash: {ip_hash}, Model: {model}")
# Cache usage statistics
@lru_cache(maxsize=10)
def get_usage_summary(days=7):
return usage_tracker.get_usage_summary(days)
@app.get("/usage")
async def get_usage(days: int = 7):
"""Retrieve usage statistics"""
return get_usage_summary(days)
# Generate HTML for usage page
def generate_usage_html(usage_data):
# Model Usage Table Rows
model_usage_rows = "\n".join([
f"""
<tr>
<td>{model}</td>
<td>{model_data['total_requests']}</td>
<td>{model_data['first_used']}</td>
<td>{model_data['last_used']}</td>
</tr>
""" for model, model_data in usage_data['models'].items()
])
# API Endpoint Usage Table Rows
api_usage_rows = "\n".join([
f"""
<tr>
<td>{endpoint}</td>
<td>{endpoint_data['total_requests']}</td>
<td>{endpoint_data['first_used']}</td>
<td>{endpoint_data['last_used']}</td>
</tr>
""" for endpoint, endpoint_data in usage_data['api_endpoints'].items()
])
# Daily Usage Table Rows
daily_usage_rows = "\n".join([
"\n".join([
f"""
<tr>
<td>{date}</td>
<td>{entity}</td>
<td>{requests}</td>
</tr>
""" for entity, requests in date_data.items()
]) for date, date_data in usage_data['recent_daily_usage'].items()
])
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Lokiai AI - Usage Statistics</title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
<style>
:root {{
--bg-dark: #0f1011;
--bg-darker: #070708;
--text-primary: #e6e6e6;
--text-secondary: #8c8c8c;
--border-color: #2c2c2c;
--accent-color: #3a6ee0;
--accent-hover: #4a7ef0;
}}
body {{
font-family: 'Inter', sans-serif;
background-color: var(--bg-dark);
color: var(--text-primary);
max-width: 1200px;
margin: 0 auto;
padding: 40px 20px;
line-height: 1.6;
}}
.logo {{
display: flex;
align-items: center;
justify-content: center;
margin-bottom: 30px;
}}
.logo h1 {{
font-weight: 600;
font-size: 2.5em;
color: var(--text-primary);
margin-left: 15px;
}}
.logo img {{
width: 60px;
height: 60px;
border-radius: 10px;
}}
.container {{
background-color: var(--bg-darker);
border-radius: 12px;
padding: 30px;
box-shadow: 0 15px 40px rgba(0,0,0,0.3);
border: 1px solid var(--border-color);
}}
h2, h3 {{
color: var(--text-primary);
border-bottom: 2px solid var(--border-color);
padding-bottom: 10px;
font-weight: 500;
}}
.total-requests {{
background-color: var(--accent-color);
color: white;
text-align: center;
padding: 15px;
border-radius: 8px;
margin-bottom: 30px;
font-weight: 600;
letter-spacing: -0.5px;
}}
table {{
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin-bottom: 30px;
background-color: var(--bg-dark);
border-radius: 8px;
overflow: hidden;
}}
th, td {{
border: 1px solid var(--border-color);
padding: 12px;
text-align: left;
transition: background-color 0.3s ease;
}}
th {{
background-color: #1e1e1e;
color: var(--text-primary);
font-weight: 600;
text-transform: uppercase;
font-size: 0.9em;
}}
tr:nth-child(even) {{
background-color: rgba(255,255,255,0.05);
}}
tr:hover {{
background-color: rgba(62,100,255,0.1);
}}
@media (max-width: 768px) {{
.container {{
padding: 15px;
}}
table {{
font-size: 0.9em;
}}
}}
</style>
</head>
<body>
<div class="container">
<div class="logo">
<img src="" alt="Lokai AI Logo">
<h1>Lokiai AI</h1>
</div>
<div class="total-requests">
Total API Requests: {usage_data['total_requests']}
</div>
<h2>Model Usage</h2>
<table>
<tr>
<th>Model</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
{model_usage_rows}
</table>
<h2>API Endpoint Usage</h2>
<table>
<tr>
<th>Endpoint</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
{api_usage_rows}
</table>
<h2>Daily Usage (Last 7 Days)</h2>
<table>
<tr>
<th>Date</th>
<th>Entity</th>
<th>Requests</th>
</tr>
{daily_usage_rows}
</table>
</div>
</body>
</html>
"""
return html_content
# Cache the usage page HTML
@lru_cache(maxsize=1)
def get_usage_page_html():
usage_data = get_usage_summary()
return generate_usage_html(usage_data)
@app.get("/usage/page", response_class=HTMLResponse)
async def usage_page():
"""Serve an HTML page showing usage statistics"""
# Use cached HTML if available, regenerate if not
html_content = get_usage_page_html()
return HTMLResponse(content=html_content)
# Meme endpoint with optimized networking
@app.get("/meme")
async def get_meme():
try:
# Use the shared client for connection pooling
client = get_async_client()
response = await client.get("https://meme-api.com/gimme")
response_data = response.json()
meme_url = response_data.get("url")
if not meme_url:
raise HTTPException(status_code=404, detail="No meme found")
image_response = await client.get(meme_url, follow_redirects=True)
# Use larger chunks for streaming
async def stream_with_larger_chunks():
chunks = []
size = 0
async for chunk in image_response.aiter_bytes(chunk_size=16384):
chunks.append(chunk)
size += len(chunk)
if size >= 65536:
yield b''.join(chunks)
chunks = []
size = 0
if chunks:
yield b''.join(chunks)
return StreamingResponse(
stream_with_larger_chunks(),
media_type=image_response.headers.get("content-type", "image/png"),
headers={'Cache-Control': 'max-age=3600'} # Add caching
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to retrieve meme")
# Utility function for loading model IDs - optimized to run once at startup
def load_model_ids(json_file_path):
try:
with open(json_file_path, 'r') as f:
models_data = json.load(f)
# Extract 'id' from each model object and use a set for fast lookups
return [model['id'] for model in models_data if 'id' in model]
except Exception as e:
print(f"Error loading model IDs: {str(e)}")
return []
@app.on_event("startup")
async def startup_event():
global available_model_ids
available_model_ids = load_model_ids("models.json")
print(f"Loaded {len(available_model_ids)} model IDs")
# Add all pollinations models to available_model_ids
available_model_ids.extend(list(pollinations_models))
# Add alternate models to available_model_ids
available_model_ids.extend(list(alternate_models))
# Add mistral models to available_model_ids
available_model_ids.extend(list(mistral_models))
# Add claude models
available_model_ids.extend(list(claude_3_models))
available_model_ids = list(set(available_model_ids)) # Remove duplicates
print(f"Total available models: {len(available_model_ids)}")
# Preload scrapers
for _ in range(MAX_SCRAPERS):
scraper_pool.append(cloudscraper.create_scraper())
# Validate critical environment variables
env_vars = get_env_vars()
missing_vars = []
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
missing_vars.append('API_KEYS')
if not env_vars['secret_api_endpoint']:
missing_vars.append('SECRET_API_ENDPOINT')
if not env_vars['secret_api_endpoint_2']:
missing_vars.append('SECRET_API_ENDPOINT_2')
if not env_vars['secret_api_endpoint_3']:
missing_vars.append('SECRET_API_ENDPOINT_3')
if not env_vars['secret_api_endpoint_4']:
missing_vars.append('SECRET_API_ENDPOINT_4')
if not env_vars['secret_api_endpoint_5']: # Check the new endpoint
missing_vars.append('SECRET_API_ENDPOINT_5')
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
missing_vars.append('MISTRAL_API')
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
missing_vars.append('MISTRAL_KEY')
if missing_vars:
print(f"WARNING: The following environment variables are missing: {', '.join(missing_vars)}")
print("Some functionality may be limited.")
print("Server started successfully!")
@app.on_event("shutdown")
async def shutdown_event():
# Close the httpx client
client = get_async_client()
await client.aclose()
# Clear scraper pool
scraper_pool.clear()
# Persist usage data
usage_tracker.save_data()
print("Server shutdown complete!")
# Health check endpoint
# Health check endpoint
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
env_vars = get_env_vars()
missing_critical_vars = []
# Check critical environment variables
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
missing_critical_vars.append('API_KEYS')
if not env_vars['secret_api_endpoint']:
missing_critical_vars.append('SECRET_API_ENDPOINT')
if not env_vars['secret_api_endpoint_2']:
missing_critical_vars.append('SECRET_API_ENDPOINT_2')
if not env_vars['secret_api_endpoint_3']:
missing_critical_vars.append('SECRET_API_ENDPOINT_3')
if not env_vars['secret_api_endpoint_4']:
missing_critical_vars.append('SECRET_API_ENDPOINT_4')
if not env_vars['secret_api_endpoint_5']: # Check the new endpoint
missing_critical_vars.append('SECRET_API_ENDPOINT_5')
if not env_vars['mistral_api']:
missing_critical_vars.append('MISTRAL_API')
if not env_vars['mistral_key']:
missing_critical_vars.append('MISTRAL_KEY')
health_status = {
"status": "healthy" if not missing_critical_vars else "unhealthy",
"missing_env_vars": missing_critical_vars,
"server_status": server_status,
"message": "Everything's lit! π" if not missing_critical_vars else "Uh oh, some env vars are missing. π¬"
}
return JSONResponse(content=health_status)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |