File size: 7,895 Bytes
4986fe4
d38c2eb
ef215d3
9fa0f10
378f2c3
8834a20
fc764d5
a111cf9
 
 
 
378f2c3
d38c2eb
4986fe4
378f2c3
 
b955cc1
4986fe4
 
 
b955cc1
a111cf9
4986fe4
a111cf9
 
b955cc1
 
 
 
378f2c3
 
 
 
b955cc1
006f05b
 
 
 
 
 
a111cf9
 
 
 
 
 
 
afe2e88
a111cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
4d88866
fa65dba
 
a111cf9
4d88866
 
fa65dba
 
 
 
4d88866
 
a111cf9
fa65dba
a111cf9
 
ae066fd
a111cf9
d5656a9
a111cf9
 
 
 
 
 
 
 
 
 
 
 
 
2c1c62a
7ef5d89
c613f2b
 
 
 
 
 
 
 
 
7ef5d89
a68045e
614a889
 
 
 
 
 
 
 
 
7ef5d89
ac4bad0
3109050
 
 
a0270ea
 
ef215d3
0881536
b955cc1
ba11b8c
 
 
 
 
 
a0270ea
3109050
8834a20
 
b955cc1
ba11b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114ca84
 
3109050
 
ba11b8c
 
 
 
 
 
 
 
3109050
ba11b8c
 
3109050
ba11b8c
3109050
a0270ea
 
3109050
7ef5d89
 
 
 
 
a111cf9
 
6a84e5c
 
 
8e4491b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse  
from pydantic import BaseModel
import httpx
from pathlib import Path  # Import Path from pathlib
import requests
import re
import json
from typing import Optional

load_dotenv()

app = FastAPI()

# Get API keys and secret endpoint from environment variables
api_keys_str = os.getenv('API_KEYS')
valid_api_keys = api_keys_str.split(',') if api_keys_str else []
secret_api_endpoint = os.getenv('SECRET_API_ENDPOINT')
secret_api_endpoint_2 = os.getenv('SECRET_API_ENDPOINT_2')
secret_api_endpoint_3 = os.getenv('SECRET_API_ENDPOINT_3')  # New endpoint for searchgpt

# Validate if the main secret API endpoints are set
if not secret_api_endpoint or not secret_api_endpoint_2 or not secret_api_endpoint_3:
    raise HTTPException(status_code=500, detail="API endpoint(s) are not configured in environment variables.")

# Define models that should use the secondary endpoint
alternate_models = {"gpt-4o-mini", "claude-3-haiku", "llama-3.1-70b", "mixtral-8x7b"}

class Payload(BaseModel):
    model: str
    messages: list
    stream: bool
@app.get("/favicon.ico")
async def favicon():
    # The favicon.ico file is in the same directory as the app
    favicon_path = Path(__file__).parent / "favicon.ico"
    return FileResponse(favicon_path, media_type="image/x-icon")
    
def generate_search(query: str, stream: bool = True) -> str:
    headers = {"User-Agent": ""}
    prompt = [
        {"role": "user", "content": query},
    ]
    
    # Insert the system prompt at the beginning of the conversation history
    prompt.insert(0, {"content": "Be Helpful and Friendly", "role": "system"})
    
    payload = {
        "is_vscode_extension": True,
        "message_history": prompt,
        "requested_model": "searchgpt",
        "user_input": prompt[-1]["content"],
    }
    
    # Use the newly added SECRET_API_ENDPOINT_3 for the search API call
    chat_endpoint = secret_api_endpoint_3
    response = requests.post(chat_endpoint, headers=headers, json=payload, stream=True)
    
    # Collect streamed text content
    streaming_text = ""
    for value in response.iter_lines(decode_unicode=True):
        # Ensure the value starts with 'data: ' and process it
        if value.startswith("data: "):  
            try:
                json_modified_value = json.loads(value[6:])  # Remove 'data: ' prefix
                content = json_modified_value.get("choices", [{}])[0].get("delta", {}).get("content", "")
                # Include everything, even if it's just whitespace
                if stream:
                    yield f"data: {json.dumps({'response': content})}\n\n"
                streaming_text += content
            except json.JSONDecodeError:
                continue  # Skip lines that are not valid JSON
    
    # If not streaming, yield the full collected content
    if not stream:
        yield streaming_text
        
@app.get("/searchgpt")
async def search_gpt(q: str, stream: Optional[bool] = False):
    if not q:
        raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
    
    if stream:
        return StreamingResponse(
            generate_search(q, stream=True),
            media_type="text/event-stream"
        )
    else:
        # For non-streaming response, collect all content and return as JSON
        response_text = "".join([chunk for chunk in generate_search(q, stream=False)])
        return JSONResponse(content={"response": response_text})

@app.get("/", response_class=HTMLResponse)
async def root():
    # Open and read the content of index.html (in the same folder as the app)
    file_path = "index.html"

    try:
        with open(file_path, "r") as file:
            html_content = file.read()
        return HTMLResponse(content=html_content)
    except FileNotFoundError:
        return HTMLResponse(content="<h1>File not found</h1>", status_code=404)

async def get_models():
    try:
        # Load the models from models.json in the same folder
        file_path = Path(__file__).parent / 'models.json'
        with open(file_path, 'r') as f:
            return json.load(f)
    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="models.json not found")
    except json.JSONDecodeError:
        raise HTTPException(status_code=500, detail="Error decoding models.json")

@app.get("/models")
async def fetch_models():
    return await get_models()

@app.post("/chat/completions")
@app.post("/v1/chat/completions")
async def get_completion(payload: Payload, request: Request):
    model_to_use = payload.model
    payload_dict = payload.dict()
    payload_dict["model"] = model_to_use

    # Select the appropriate endpoint
    endpoint = secret_api_endpoint_2 if model_to_use in alternate_models else secret_api_endpoint

    print(payload_dict)

    async def stream_generator(payload_dict):
        async with httpx.AsyncClient() as client:
            try:
                async with client.stream("POST", f"{endpoint}/v1/chat/completions", json=payload_dict, timeout=10) as response:
                    if response.status_code == 422:
                        # Handle unprocessable entity errors
                        raise HTTPException(status_code=422, detail="Unprocessable entity. Check your payload.")
                    elif response.status_code == 400:
                        # Handle bad request errors
                        raise HTTPException(status_code=400, detail="Bad request. Verify input data.")
                    elif response.status_code == 403:
                        # Handle forbidden access
                        raise HTTPException(status_code=403, detail="Forbidden. You do not have access to this resource.")
                    elif response.status_code == 404:
                        # Handle not found errors
                        raise HTTPException(status_code=404, detail="The requested resource was not found.")
                    elif response.status_code >= 500:
                        # Handle server errors
                        raise HTTPException(status_code=500, detail="Server error. Try again later.")
                    
                    response.raise_for_status()  # Raise HTTPStatusError for non-200 responses not explicitly handled
                    
                    # Stream response to the client
                    async for line in response.aiter_lines():
                        if line:
                            yield f"{line}\n"
            except httpx.HTTPStatusError as status_err:
                # Catch specific HTTP errors
                raise HTTPException(
                    status_code=status_err.response.status_code,
                    detail=f"HTTP error: {status_err.response.text}"
                )
            except httpx.TimeoutException:
                # Handle timeout errors
                raise HTTPException(status_code=504, detail="Request timed out. Please try again later.")
            except httpx.RequestError as req_err:
                # Handle generic request errors
                raise HTTPException(status_code=500, detail=f"Request failed: {req_err}")
            except Exception as e:
                # Catch any unexpected exceptions
                raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")

    return StreamingResponse(stream_generator(payload_dict), media_type="application/json")
    
@app.on_event("startup")
async def startup_event():
    print("API endpoints:")
    print("GET /")
    print("GET /models")
    print("GET /searchgpt")  # We now have the new search API
    print("POST /chat/completions")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)