Jiayi-Pan commited on
Commit
fbc47a3
·
verified ·
1 Parent(s): ab076ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -1
README.md CHANGED
@@ -7,4 +7,34 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ <h1 align="center"> Learning Adaptive Reasoning Search in Language </h1>
11
+
12
+ <p align="center">
13
+ <a href="https://www.jiayipan.com/" style="text-decoration: none;">Jiayi Pan</a><sup>*</sup>,
14
+ <a href="https://xiuyuli.com/" style="text-decoration: none;">Xiuyu Li</a><sup>*</sup>,
15
+ <a href="https://tonylian.com/" style="text-decoration: none;">Long Lian</a><sup>*</sup>,
16
+ <a href="https://sea-snell.github.io/" style="text-decoration: none;">Charlie Victor Snell</a>,
17
+ <a href="https://yifeizhou02.github.io/" style="text-decoration: none;">Yifei Zhou</a>,<br>
18
+ <a href="https://www.adamyala.org/" style="text-decoration: none;">Adam Yala</a>,
19
+ <a href="https://people.eecs.berkeley.edu/~trevor/" style="text-decoration: none;">Trevor Darrell</a>,
20
+ <a href="https://people.eecs.berkeley.edu/~keutzer/" style="text-decoration: none;">Kurt Keutzer</a>,
21
+ <a href="https://www.alanesuhr.com/" style="text-decoration: none;">Alane Suhr</a>
22
+ </p>
23
+
24
+ <p align="center">
25
+ UC Berkeley and UCSF &nbsp;&nbsp;&nbsp;<sup>*</sup> Equal Contribution
26
+ </p>
27
+
28
+ <p align="center">
29
+ <a href="TODO">📃 Paper</a>
30
+
31
+ <a href="https://huggingface.co/Parallel-Reasoning" >🤗 Data & Models</a>
32
+ </p>
33
+
34
+
35
+
36
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61568f37272f2d87a99ba884/2GvPLwAX0hYt9PxYjAIej.png)
37
+
38
+ **TL;DR**:
39
+ We present Adaptive Parallel Reasoning (APR), a novel framework that enables language models to learn to orchestrate both serialized and parallel computations. APR trains language models to use `spawn()` and `join()` operations through end-to-end supervised training and reinforcement learning, allowing models to dynamically orchestrate their own computational workflows.
40
+ APR efficiently distributes compute, reduces latency, overcomes context window limits, and achieves state‑of‑the‑art performance on complex reasoning tasks (e.g., 83.4% vs. 60.0% accuracy at 4K context on Countdown).