jzhang533 commited on
Commit
a5c6602
·
1 Parent(s): 213a727

using paddlepaddle + qwen0.5 to demo

Browse files

Signed-off-by: Zhang Jun <[email protected]>

Files changed (2) hide show
  1. app.py +23 -50
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,63 +1,36 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
 
63
  if __name__ == "__main__":
 
1
  import gradio as gr
2
+ from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
5
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", dtype="float32")
 
 
6
 
7
 
8
+ def inference(input_text):
9
+ print(input_text)
10
+ print(type(input_text))
11
+ input_features = tokenizer(input_text, return_tensors="pd")
 
 
 
 
 
12
 
13
+ outputs = model.generate(**input_features, max_new_tokens=128)#max_length=128)
14
+ output_text = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)[0]
 
 
 
15
 
16
+ return output_text
17
 
 
18
 
19
+ title = 'PaddlePaddle Meets LLM'
20
+ description = 'What is special: underlying execution is using PaddlePaddle and PaddleNLP!'
21
+ article = "<p style='text-align: center'> PaddleNLP <a href='https://github.com/PaddlePaddle/PaddleNLP'>Github Repo</a></p>"
 
 
 
 
 
22
 
23
+ examples = ['请自我介绍一下。', '今天吃什么好呢?']
 
24
 
25
+ demo = gr.Interface(
26
+ inference,
27
+ inputs="text",
28
+ outputs="text",
29
+ title=title,
30
+ description=description,
31
+ article=article,
32
+ examples=examples,
33
+ )
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
  if __name__ == "__main__":
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.25.2
 
 
1
+ paddlepaddle
2
+ paddlenlp==3.0.0b4