File size: 4,454 Bytes
8b775e5
 
 
 
ebb9438
 
 
 
8b775e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa63dda
7a086ec
8b775e5
 
 
 
389b598
ebb9438
 
daf8121
 
 
 
 
 
 
 
 
 
 
 
e2feaed
ebb9438
 
daf8121
 
8b775e5
daf8121
8b775e5
ebb9438
 
e2feaed
e726d75
8b775e5
 
daf8121
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import asyncio
import functools
import uuid

from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import gradio as gr

LANG_CONFIG = {
    "ch": {"num_workers": 4},
    "en": {"num_workers": 4},
    "fr": {"num_workers": 1},
    "german": {"num_workers": 1},
    "korean": {"num_workers": 1},
    "japan": {"num_workers": 1},
}
CONCURRENCY_LIMIT = 8


class PaddleOCRModelWrapper(object):
    def __init__(self, model, name=None):
        super().__init__()
        self._model = model
        self._name = name or self._get_random_name()
        self._state = "IDLE"

    @property
    def name(self):
        return self._name

    @property
    def state(self):
        return self._state

    @state.setter
    def state(self, state):
        self._state = state

    def infer(self, **kwargs):
        img_path = kwargs["img"]
        result = self._model.ocr(**kwargs)[0]
        image = Image.open(img_path).convert("RGB")
        boxes = [line[0] for line in result]
        txts = [line[1][0] for line in result]
        scores = [line[1][1] for line in result]
        im_show = draw_ocr(image, boxes, txts, scores,
                        font_path="./simfang.ttf")
        return im_show

    def _get_random_name(self):
        return str(uuid.uuid4())


class PaddleOCRModelManager(object):
    def __init__(self,
                 num_models,
                 model_factory,
                 *,
                 polling_interval=0.1):
        super().__init__()
        self._num_models = num_models
        self._model_factory = model_factory
        self._polling_interval = polling_interval
        self._models = {}
        self.new_models()

    def new_models(self):
        self._models.clear()
        for _ in range(self._num_models):
            model = self._new_model()
            self._models[model.name] = model

    async def infer(self, **kwargs):
        while True:
            model = self._get_available_model()
            if not model:
                await asyncio.sleep(self._polling_interval)
                continue
            model.state = "RUNNING"
            # NOTE: I take an optimistic approach here, assuming that the model
            # is not broken even if inference fails.
            try:
                result = await self._new_inference_task(model, **kwargs)
            finally:
                model.state = "IDLE"
            return result

    def _new_model(self):
        real_model = self._model_factory()
        model = PaddleOCRModelWrapper(real_model)
        return model

    def _get_available_model(self):
        if not self._models:
            raise RuntimeError("No living models")
        for model in self._models.values():
            if model.state == "IDLE":
                return model
        return None

    def _new_inference_task(self, model,
                            **kwargs):
        return asyncio.get_running_loop().run_in_executor(
            None, functools.partial(model.infer, **kwargs))


def create_model(lang):
    return PaddleOCR(lang=lang, use_angle_cls=True, use_gpu=False) 


model_managers = {}
for lang, config in LANG_CONFIG.items():
    model_manager = PaddleOCRModelManager(config["num_workers"], functools.partial(create_model, lang=lang))
    model_managers[lang] = model_manager


async def inference(img, lang):
    ocr = model_managers[lang]
    result = await ocr.infer(img=img, cls=True)
    return result


title = 'PaddleOCR'
description = '''
- Gradio demo for PaddleOCR. PaddleOCR demo supports Chinese, English, French, German, Korean and Japanese. 
- To use it, simply upload your image and choose a language from the dropdown menu, or click one of the examples to load them. Read more at the links below.
- [Docs](https://paddlepaddle.github.io/PaddleOCR/), [Github Repository](https://github.com/PaddlePaddle/PaddleOCR).
'''

examples = [
    ['en_example.jpg','en'],
    ['cn_example.jpg','ch'],
    ['jp_example.jpg','japan'],
]

css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
gr.Interface(
    inference,
    [
        gr.Image(type='filepath', label='Input'),
        gr.Dropdown(choices=list(LANG_CONFIG.keys()), value='en', label='language')
    ],
    gr.Image(type='pil', label='Output'),
    title=title,
    description=description,
    examples=examples,
    cache_examples=False,
    css=css,
    concurrency_limit=CONCURRENCY_LIMIT,
    ).launch(debug=False)