Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,16 @@ import numpy as np
|
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
|
8 |
-
# Set
|
9 |
set_seed(42)
|
10 |
|
11 |
-
# Define
|
12 |
premium_models = [
|
13 |
-
"
|
|
|
|
|
|
|
|
|
14 |
"HuggingFaceH4/zephyr-7b-beta"
|
15 |
]
|
16 |
|
@@ -23,13 +27,13 @@ languages = {
|
|
23 |
"pt": "Portuguese"
|
24 |
}
|
25 |
|
26 |
-
# Define two cost-effective grammar evaluation models
|
27 |
grammar_model_names = [
|
28 |
"vennify/t5-base-grammar-correction",
|
29 |
"hassaanik/grammar-correction-model"
|
30 |
]
|
31 |
|
32 |
-
#
|
33 |
def load_generation_pipeline(model_name):
|
34 |
try:
|
35 |
return pipeline("text-generation", model=model_name)
|
@@ -37,6 +41,7 @@ def load_generation_pipeline(model_name):
|
|
37 |
print(f"Error loading generation model {model_name}: {e}")
|
38 |
return None
|
39 |
|
|
|
40 |
def load_grammar_pipeline(model_name):
|
41 |
try:
|
42 |
return pipeline("text2text-generation", model=model_name)
|
@@ -44,13 +49,14 @@ def load_grammar_pipeline(model_name):
|
|
44 |
print(f"Error loading grammar model {model_name}: {e}")
|
45 |
return None
|
46 |
|
47 |
-
# Pre-load grammar
|
48 |
rater_models = []
|
49 |
for model_name in grammar_model_names:
|
50 |
p = load_grammar_pipeline(model_name)
|
51 |
if p is not None:
|
52 |
rater_models.append(p)
|
53 |
|
|
|
54 |
def clean_text(text):
|
55 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
56 |
|
@@ -58,15 +64,16 @@ def is_palindrome(text):
|
|
58 |
cleaned = clean_text(text)
|
59 |
return cleaned == cleaned[::-1]
|
60 |
|
61 |
-
#
|
62 |
def build_prompt(lang):
|
63 |
return (
|
64 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
65 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
66 |
-
"Do not output any additional text
|
67 |
"Palindrome: "
|
68 |
)
|
69 |
|
|
|
70 |
def grammar_prompt(pal, lang):
|
71 |
return (
|
72 |
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. "
|
@@ -74,6 +81,7 @@ def grammar_prompt(pal, lang):
|
|
74 |
f'"{pal}"\n'
|
75 |
)
|
76 |
|
|
|
77 |
def extract_score(text):
|
78 |
match = re.search(r"\d{1,3}", text)
|
79 |
if match:
|
@@ -81,25 +89,23 @@ def extract_score(text):
|
|
81 |
return min(max(score, 0), 100)
|
82 |
return 0
|
83 |
|
84 |
-
# Main benchmark function
|
85 |
def run_benchmark_all():
|
86 |
results = []
|
87 |
-
|
88 |
for model_name in premium_models:
|
89 |
gen_pipeline = load_generation_pipeline(model_name)
|
90 |
if gen_pipeline is None:
|
91 |
continue
|
92 |
-
|
93 |
for code, lang in languages.items():
|
94 |
prompt = build_prompt(lang)
|
95 |
try:
|
96 |
gen_output = gen_pipeline(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'].strip()
|
97 |
except Exception as e:
|
98 |
gen_output = f"Error generating text: {e}"
|
99 |
-
|
100 |
valid = is_palindrome(gen_output)
|
101 |
cleaned_len = len(clean_text(gen_output))
|
102 |
|
|
|
103 |
scores = []
|
104 |
for rater in rater_models:
|
105 |
rprompt = grammar_prompt(gen_output, lang)
|
@@ -123,28 +129,23 @@ def run_benchmark_all():
|
|
123 |
"Final Score": final_score
|
124 |
})
|
125 |
|
126 |
-
# Create DataFrame and sort by Final Score.
|
127 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
128 |
-
|
129 |
-
# Automatically save results to a CSV file.
|
130 |
csv_path = "benchmark_results.csv"
|
131 |
df.to_csv(csv_path, index=False)
|
132 |
-
print(f"CSV
|
133 |
-
|
134 |
-
# Return both the DataFrame and the CSV file path for download.
|
135 |
return gr.Dataframe(df), csv_path
|
136 |
|
137 |
-
# Build the Gradio UI using
|
138 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
139 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
140 |
-
gr.Markdown(
|
141 |
-
|
|
|
|
|
142 |
with gr.Row():
|
143 |
run_button = gr.Button("Run All Benchmarks")
|
144 |
-
|
145 |
output_table = gr.Dataframe(label="Benchmark Results")
|
146 |
output_file = gr.File(label="Download CSV Results")
|
147 |
-
|
148 |
run_button.click(fn=run_benchmark_all, inputs=[], outputs=[output_table, output_file])
|
149 |
|
150 |
demo.launch()
|
|
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
|
8 |
+
# Set seed for reproducibility
|
9 |
set_seed(42)
|
10 |
|
11 |
+
# Define the six premium generation models:
|
12 |
premium_models = [
|
13 |
+
"Qwen/Qwen2.5-Omni-7B",
|
14 |
+
"Qwen/Qwen2.5-VL-7B-Instruct",
|
15 |
+
"deepseek-ai/Janus-Pro-7B",
|
16 |
+
"meta-llama/Llama-2-7b-hf",
|
17 |
+
"Alibaba-NLP/gte-Qwen2-7B-instruct",
|
18 |
"HuggingFaceH4/zephyr-7b-beta"
|
19 |
]
|
20 |
|
|
|
27 |
"pt": "Portuguese"
|
28 |
}
|
29 |
|
30 |
+
# Define two cost-effective grammar evaluation models:
|
31 |
grammar_model_names = [
|
32 |
"vennify/t5-base-grammar-correction",
|
33 |
"hassaanik/grammar-correction-model"
|
34 |
]
|
35 |
|
36 |
+
# Function to load generation pipelines on demand
|
37 |
def load_generation_pipeline(model_name):
|
38 |
try:
|
39 |
return pipeline("text-generation", model=model_name)
|
|
|
41 |
print(f"Error loading generation model {model_name}: {e}")
|
42 |
return None
|
43 |
|
44 |
+
# Function to load grammar evaluation pipelines on demand
|
45 |
def load_grammar_pipeline(model_name):
|
46 |
try:
|
47 |
return pipeline("text2text-generation", model=model_name)
|
|
|
49 |
print(f"Error loading grammar model {model_name}: {e}")
|
50 |
return None
|
51 |
|
52 |
+
# Pre-load grammar evaluators
|
53 |
rater_models = []
|
54 |
for model_name in grammar_model_names:
|
55 |
p = load_grammar_pipeline(model_name)
|
56 |
if p is not None:
|
57 |
rater_models.append(p)
|
58 |
|
59 |
+
# Utility functions to clean text and check for palindromes
|
60 |
def clean_text(text):
|
61 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
62 |
|
|
|
64 |
cleaned = clean_text(text)
|
65 |
return cleaned == cleaned[::-1]
|
66 |
|
67 |
+
# Build prompt with clear instructions to output only the palindrome.
|
68 |
def build_prompt(lang):
|
69 |
return (
|
70 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
71 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
72 |
+
"Do not output any additional text or commentary.\n"
|
73 |
"Palindrome: "
|
74 |
)
|
75 |
|
76 |
+
# Build prompt for grammar evaluation
|
77 |
def grammar_prompt(pal, lang):
|
78 |
return (
|
79 |
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. "
|
|
|
81 |
f'"{pal}"\n'
|
82 |
)
|
83 |
|
84 |
+
# Extract numeric score from text output
|
85 |
def extract_score(text):
|
86 |
match = re.search(r"\d{1,3}", text)
|
87 |
if match:
|
|
|
89 |
return min(max(score, 0), 100)
|
90 |
return 0
|
91 |
|
92 |
+
# Main benchmark function - runs all tests and saves CSV automatically.
|
93 |
def run_benchmark_all():
|
94 |
results = []
|
|
|
95 |
for model_name in premium_models:
|
96 |
gen_pipeline = load_generation_pipeline(model_name)
|
97 |
if gen_pipeline is None:
|
98 |
continue
|
|
|
99 |
for code, lang in languages.items():
|
100 |
prompt = build_prompt(lang)
|
101 |
try:
|
102 |
gen_output = gen_pipeline(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'].strip()
|
103 |
except Exception as e:
|
104 |
gen_output = f"Error generating text: {e}"
|
|
|
105 |
valid = is_palindrome(gen_output)
|
106 |
cleaned_len = len(clean_text(gen_output))
|
107 |
|
108 |
+
# Evaluate grammar using both grammar models
|
109 |
scores = []
|
110 |
for rater in rater_models:
|
111 |
rprompt = grammar_prompt(gen_output, lang)
|
|
|
129 |
"Final Score": final_score
|
130 |
})
|
131 |
|
|
|
132 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
|
|
|
|
133 |
csv_path = "benchmark_results.csv"
|
134 |
df.to_csv(csv_path, index=False)
|
135 |
+
print(f"CSV saved to {os.path.abspath(csv_path)}")
|
|
|
|
|
136 |
return gr.Dataframe(df), csv_path
|
137 |
|
138 |
+
# Build the Gradio UI using a Blocks layout
|
139 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
140 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
141 |
+
gr.Markdown(
|
142 |
+
"This benchmark runs automatically over 6 premium text-generation models across 5 languages "
|
143 |
+
"(English, German, Spanish, French, Portuguese) and saves the results to a CSV file upon completion."
|
144 |
+
)
|
145 |
with gr.Row():
|
146 |
run_button = gr.Button("Run All Benchmarks")
|
|
|
147 |
output_table = gr.Dataframe(label="Benchmark Results")
|
148 |
output_file = gr.File(label="Download CSV Results")
|
|
|
149 |
run_button.click(fn=run_benchmark_all, inputs=[], outputs=[output_table, output_file])
|
150 |
|
151 |
demo.launch()
|