Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline, set_seed | |
import re | |
import numpy as np | |
import pandas as pd | |
import os | |
import torch | |
# Check GPU availability (for debugging) | |
print("CUDA available:", torch.cuda.is_available()) | |
if torch.cuda.is_available(): | |
print("GPU Name:", torch.cuda.get_device_name(0)) | |
else: | |
print("No GPU detected. Running on CPU.") | |
# Set seed for reproducibility | |
set_seed(42) | |
# Define the six premium generation models: | |
premium_models = [ | |
"Qwen/Qwen2.5-Omni-7B", | |
"Qwen/Qwen2.5-VL-7B-Instruct", | |
"deepseek-ai/Janus-Pro-7B", | |
"meta-llama/Llama-2-7b-hf", | |
"Alibaba-NLP/gte-Qwen2-7B-instruct", | |
"HuggingFaceH4/zephyr-7b-beta" | |
] | |
# Define five languages: English, German, Spanish, French, Portuguese. | |
languages = { | |
"en": "English", | |
"de": "German", | |
"es": "Spanish", | |
"fr": "French", | |
"pt": "Portuguese" | |
} | |
# Define two cost-effective grammar evaluation models: | |
grammar_model_names = [ | |
"vennify/t5-base-grammar-correction", | |
"hassaanik/grammar-correction-model" | |
] | |
# Determine device: Use GPU (0) if available, otherwise CPU (-1) | |
device = 0 if torch.cuda.is_available() else -1 | |
# Function to load generation pipelines with appropriate device setting. | |
def load_generation_pipeline(model_name): | |
try: | |
return pipeline("text-generation", model=model_name, device=device) | |
except Exception as e: | |
print(f"Error loading generation model {model_name}: {e}") | |
return None | |
# Function to load grammar evaluation pipelines with appropriate device setting. | |
def load_grammar_pipeline(model_name): | |
try: | |
return pipeline("text2text-generation", model=model_name, device=device) | |
except Exception as e: | |
print(f"Error loading grammar model {model_name}: {e}") | |
return None | |
# Pre-load grammar evaluators. | |
rater_models = [] | |
for model_name in grammar_model_names: | |
p = load_grammar_pipeline(model_name) | |
if p is not None: | |
rater_models.append(p) | |
def clean_text(text): | |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower()) | |
def is_palindrome(text): | |
cleaned = clean_text(text) | |
return cleaned == cleaned[::-1] | |
# Updated prompt instructs the model to output only the palindrome. | |
def build_prompt(lang): | |
return ( | |
f"Instruction: Generate a single original palindrome in {lang}.\n" | |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n" | |
"Do not output any additional text or commentary.\n" | |
"Palindrome: " | |
) | |
def grammar_prompt(pal, lang): | |
return ( | |
f"Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. " | |
"Return only a number with no explanation.\n\n" | |
f'"{pal}"\n' | |
) | |
def extract_score(text): | |
match = re.search(r"\d{1,3}", text) | |
if match: | |
score = int(match.group()) | |
return min(max(score, 0), 100) | |
return 0 | |
# Main benchmark function that runs tests and saves CSV results. | |
def run_benchmark_all(): | |
results = [] | |
for model_name in premium_models: | |
gen_pipeline = load_generation_pipeline(model_name) | |
if gen_pipeline is None: | |
continue | |
for code, lang in languages.items(): | |
prompt = build_prompt(lang) | |
try: | |
gen_output = gen_pipeline(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'].strip() | |
except Exception as e: | |
gen_output = f"Error generating text: {e}" | |
valid = is_palindrome(gen_output) | |
cleaned_len = len(clean_text(gen_output)) | |
scores = [] | |
for rater in rater_models: | |
rprompt = grammar_prompt(gen_output, lang) | |
try: | |
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text'] | |
score = extract_score(rtext) | |
scores.append(score) | |
except Exception as e: | |
scores.append(0) | |
avg_score = np.mean(scores) if scores else 0 | |
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5 | |
final_score = round(cleaned_len * penalty, 2) | |
results.append({ | |
"Model": model_name, | |
"Language": lang, | |
"Palindrome": gen_output, | |
"Valid": "✅" if valid else "❌", | |
"Length": cleaned_len, | |
"Grammar Score": avg_score, | |
"Final Score": final_score | |
}) | |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True) | |
csv_path = "benchmark_results.csv" | |
df.to_csv(csv_path, index=False) | |
print(f"CSV saved to {os.path.abspath(csv_path)}") | |
return gr.Dataframe(df), csv_path | |
# Build the Gradio UI using Blocks for a canvas layout. | |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo: | |
gr.Markdown("# Premium Model Palindrome Benchmark") | |
gr.Markdown( | |
"This benchmark runs automatically over 6 premium text-generation models across 5 languages and saves the results " | |
"to a CSV file upon completion." | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run All Benchmarks") | |
output_table = gr.Dataframe(label="Benchmark Results") | |
output_file = gr.File(label="Download CSV Results") | |
run_button.click(fn=run_benchmark_all, inputs=[], outputs=[output_table, output_file]) | |
demo.launch() | |