import time import torch import vox2seq if __name__ == "__main__": stats = { 'z_order_cuda': [], 'z_order_pytorch': [], 'hilbert_cuda': [], 'hilbert_pytorch': [], } RES = [16, 32, 64, 128, 256] for res in RES: coords = torch.meshgrid(torch.arange(res), torch.arange(res), torch.arange(res)) coords = torch.stack(coords, dim=-1).reshape(-1, 3).int().cuda() start = time.time() for _ in range(100): code_z_cuda = vox2seq.encode(coords, mode='z_order').cuda() torch.cuda.synchronize() stats['z_order_cuda'].append((time.time() - start) / 100) start = time.time() for _ in range(100): code_z_pytorch = vox2seq.pytorch.encode(coords, mode='z_order').cuda() torch.cuda.synchronize() stats['z_order_pytorch'].append((time.time() - start) / 100) start = time.time() for _ in range(100): code_h_cuda = vox2seq.encode(coords, mode='hilbert').cuda() torch.cuda.synchronize() stats['hilbert_cuda'].append((time.time() - start) / 100) start = time.time() for _ in range(100): code_h_pytorch = vox2seq.pytorch.encode(coords, mode='hilbert').cuda() torch.cuda.synchronize() stats['hilbert_pytorch'].append((time.time() - start) / 100) print(f"{'Resolution':<12}{'Z-Order (CUDA)':<24}{'Z-Order (PyTorch)':<24}{'Hilbert (CUDA)':<24}{'Hilbert (PyTorch)':<24}") for res, z_order_cuda, z_order_pytorch, hilbert_cuda, hilbert_pytorch in zip(RES, stats['z_order_cuda'], stats['z_order_pytorch'], stats['hilbert_cuda'], stats['hilbert_pytorch']): print(f"{res:<12}{z_order_cuda:<24.6f}{z_order_pytorch:<24.6f}{hilbert_cuda:<24.6f}{hilbert_pytorch:<24.6f}")