PUM4CH3N commited on
Commit
83d10c9
·
1 Parent(s): 27271e8
Files changed (2) hide show
  1. .gitignore +2 -0
  2. app.py +23 -27
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .idea/*
2
+ __pycache__
app.py CHANGED
@@ -4,7 +4,7 @@ from gradio_litmodel3d import LitModel3D
4
 
5
  import os
6
  import shutil
7
- os.environ['TOKENIZERS_PARALLELISM'] = 'true'
8
  os.environ['SPCONV_ALGO'] = 'native'
9
  from typing import *
10
  import torch
@@ -106,32 +106,28 @@ def text_to_3d(
106
  dict: The information of the generated 3D model.
107
  str: The path to the video of the 3D model.
108
  """
109
- try:
110
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
111
- outputs = pipeline.run(
112
- prompt,
113
- seed=seed,
114
- formats=["gaussian", "mesh"],
115
- sparse_structure_sampler_params={
116
- "steps": ss_sampling_steps,
117
- "cfg_strength": ss_guidance_strength,
118
- },
119
- slat_sampler_params={
120
- "steps": slat_sampling_steps,
121
- "cfg_strength": slat_guidance_strength,
122
- },
123
- )
124
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
125
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
126
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
127
- video_path = os.path.join(user_dir, 'sample.mp4')
128
- imageio.mimsave(video_path, video, fps=15)
129
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
130
- torch.cuda.empty_cache()
131
- return state, video_path
132
- except Exception as e:
133
- et, ev, tb = sys.exc_info()
134
- traceback.print_tb(tb)
135
 
136
 
137
  @spaces.GPU(duration=90)
 
4
 
5
  import os
6
  import shutil
7
+ # os.environ['TOKENIZERS_PARALLELISM'] = 'true'
8
  os.environ['SPCONV_ALGO'] = 'native'
9
  from typing import *
10
  import torch
 
106
  dict: The information of the generated 3D model.
107
  str: The path to the video of the 3D model.
108
  """
109
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
110
+ outputs = pipeline.run(
111
+ prompt,
112
+ seed=seed,
113
+ formats=["gaussian", "mesh"],
114
+ sparse_structure_sampler_params={
115
+ "steps": ss_sampling_steps,
116
+ "cfg_strength": ss_guidance_strength,
117
+ },
118
+ slat_sampler_params={
119
+ "steps": slat_sampling_steps,
120
+ "cfg_strength": slat_guidance_strength,
121
+ },
122
+ )
123
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
124
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
125
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
126
+ video_path = os.path.join(user_dir, 'sample.mp4')
127
+ imageio.mimsave(video_path, video, fps=15)
128
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
129
+ torch.cuda.empty_cache()
130
+ return state, video_path
 
 
 
 
131
 
132
 
133
  @spaces.GPU(duration=90)