junbiao.chen
Trellis update
cc0c59d
raw
history blame contribute delete
2.45 kB
from typing import *
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
import torch
from transformers import AutoTokenizer, CLIPTextModel
from ....utils import dist_utils
class TextConditionedMixin:
"""
Mixin for text-conditioned models.
Args:
text_cond_model: The text conditioning model.
"""
def __init__(self, *args, text_cond_model: str = 'openai/clip-vit-large-patch14', **kwargs):
super().__init__(*args, **kwargs)
self.text_cond_model_name = text_cond_model
self.text_cond_model = None # the model is init lazily
def _init_text_cond_model(self):
"""
Initialize the text conditioning model.
"""
# load model
with dist_utils.local_master_first():
model = CLIPTextModel.from_pretrained(self.text_cond_model_name)
tokenizer = AutoTokenizer.from_pretrained(self.text_cond_model_name)
model.eval()
model = model.cuda()
self.text_cond_model = {
'model': model,
'tokenizer': tokenizer,
}
self.text_cond_model['null_cond'] = self.encode_text([''])
@torch.no_grad()
def encode_text(self, text: List[str]) -> torch.Tensor:
"""
Encode the text.
"""
assert isinstance(text, list) and isinstance(text[0], str), "TextConditionedMixin only supports list of strings as cond"
if self.text_cond_model is None:
self._init_text_cond_model()
encoding = self.text_cond_model['tokenizer'](text, max_length=77, padding='max_length', truncation=True, return_tensors='pt')
tokens = encoding['input_ids'].cuda()
embeddings = self.text_cond_model['model'](input_ids=tokens).last_hidden_state
return embeddings
def get_cond(self, cond, **kwargs):
"""
Get the conditioning data.
"""
cond = self.encode_text(cond)
kwargs['neg_cond'] = self.text_cond_model['null_cond'].repeat(cond.shape[0], 1, 1)
cond = super().get_cond(cond, **kwargs)
return cond
def get_inference_cond(self, cond, **kwargs):
"""
Get the conditioning data for inference.
"""
cond = self.encode_text(cond)
kwargs['neg_cond'] = self.text_cond_model['null_cond'].repeat(cond.shape[0], 1, 1)
cond = super().get_inference_cond(cond, **kwargs)
return cond