junbiao.chen
Trellis update
cc0c59d
raw
history blame contribute delete
3.49 kB
from typing import *
import torch
import torch.nn.functional as F
from torchvision import transforms
import numpy as np
from PIL import Image
from ....utils import dist_utils
class ImageConditionedMixin:
"""
Mixin for image-conditioned models.
Args:
image_cond_model: The image conditioning model.
"""
def __init__(self, *args, image_cond_model: str = 'dinov2_vitl14_reg', **kwargs):
super().__init__(*args, **kwargs)
self.image_cond_model_name = image_cond_model
self.image_cond_model = None # the model is init lazily
@staticmethod
def prepare_for_training(image_cond_model: str, **kwargs):
"""
Prepare for training.
"""
if hasattr(super(ImageConditionedMixin, ImageConditionedMixin), 'prepare_for_training'):
super(ImageConditionedMixin, ImageConditionedMixin).prepare_for_training(**kwargs)
# download the model
torch.hub.load('facebookresearch/dinov2', image_cond_model, pretrained=True)
def _init_image_cond_model(self):
"""
Initialize the image conditioning model.
"""
with dist_utils.local_master_first():
dinov2_model = torch.hub.load('facebookresearch/dinov2', self.image_cond_model_name, pretrained=True)
dinov2_model.eval().cuda()
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.image_cond_model = {
'model': dinov2_model,
'transform': transform,
}
@torch.no_grad()
def encode_image(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor:
"""
Encode the image.
"""
if isinstance(image, torch.Tensor):
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
elif isinstance(image, list):
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
image = torch.stack(image).cuda()
else:
raise ValueError(f"Unsupported type of image: {type(image)}")
if self.image_cond_model is None:
self._init_image_cond_model()
image = self.image_cond_model['transform'](image).cuda()
features = self.image_cond_model['model'](image, is_training=True)['x_prenorm']
patchtokens = F.layer_norm(features, features.shape[-1:])
return patchtokens
def get_cond(self, cond, **kwargs):
"""
Get the conditioning data.
"""
cond = self.encode_image(cond)
kwargs['neg_cond'] = torch.zeros_like(cond)
cond = super().get_cond(cond, **kwargs)
return cond
def get_inference_cond(self, cond, **kwargs):
"""
Get the conditioning data for inference.
"""
cond = self.encode_image(cond)
kwargs['neg_cond'] = torch.zeros_like(cond)
cond = super().get_inference_cond(cond, **kwargs)
return cond
def vis_cond(self, cond, **kwargs):
"""
Visualize the conditioning data.
"""
return {'image': {'value': cond, 'type': 'image'}}