Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
import numpy as np | |
from PIL import Image | |
from ....utils import dist_utils | |
class ImageConditionedMixin: | |
""" | |
Mixin for image-conditioned models. | |
Args: | |
image_cond_model: The image conditioning model. | |
""" | |
def __init__(self, *args, image_cond_model: str = 'dinov2_vitl14_reg', **kwargs): | |
super().__init__(*args, **kwargs) | |
self.image_cond_model_name = image_cond_model | |
self.image_cond_model = None # the model is init lazily | |
def prepare_for_training(image_cond_model: str, **kwargs): | |
""" | |
Prepare for training. | |
""" | |
if hasattr(super(ImageConditionedMixin, ImageConditionedMixin), 'prepare_for_training'): | |
super(ImageConditionedMixin, ImageConditionedMixin).prepare_for_training(**kwargs) | |
# download the model | |
torch.hub.load('facebookresearch/dinov2', image_cond_model, pretrained=True) | |
def _init_image_cond_model(self): | |
""" | |
Initialize the image conditioning model. | |
""" | |
with dist_utils.local_master_first(): | |
dinov2_model = torch.hub.load('facebookresearch/dinov2', self.image_cond_model_name, pretrained=True) | |
dinov2_model.eval().cuda() | |
transform = transforms.Compose([ | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
self.image_cond_model = { | |
'model': dinov2_model, | |
'transform': transform, | |
} | |
def encode_image(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor: | |
""" | |
Encode the image. | |
""" | |
if isinstance(image, torch.Tensor): | |
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)" | |
elif isinstance(image, list): | |
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images" | |
image = [i.resize((518, 518), Image.LANCZOS) for i in image] | |
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image] | |
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image] | |
image = torch.stack(image).cuda() | |
else: | |
raise ValueError(f"Unsupported type of image: {type(image)}") | |
if self.image_cond_model is None: | |
self._init_image_cond_model() | |
image = self.image_cond_model['transform'](image).cuda() | |
features = self.image_cond_model['model'](image, is_training=True)['x_prenorm'] | |
patchtokens = F.layer_norm(features, features.shape[-1:]) | |
return patchtokens | |
def get_cond(self, cond, **kwargs): | |
""" | |
Get the conditioning data. | |
""" | |
cond = self.encode_image(cond) | |
kwargs['neg_cond'] = torch.zeros_like(cond) | |
cond = super().get_cond(cond, **kwargs) | |
return cond | |
def get_inference_cond(self, cond, **kwargs): | |
""" | |
Get the conditioning data for inference. | |
""" | |
cond = self.encode_image(cond) | |
kwargs['neg_cond'] = torch.zeros_like(cond) | |
cond = super().get_inference_cond(cond, **kwargs) | |
return cond | |
def vis_cond(self, cond, **kwargs): | |
""" | |
Visualize the conditioning data. | |
""" | |
return {'image': {'value': cond, 'type': 'image'}} | |