import os import json import re import gradio as gr from openai import OpenAI ############################################################################## # 1. 读取外部文件 ############################################################################## try: with open("furry_species.json", "r", encoding="utf-8") as ff: FURRY_DATA = json.load(ff) except: FURRY_DATA = {} try: with open("gender_rules.json", "r", encoding="utf-8") as gf: GENDER_RULES = json.load(gf) except: GENDER_RULES = {} try: with open("transform_rules.json", "r", encoding="utf-8") as tf: TRANSFORM_DICT = json.load(tf) except: TRANSFORM_DICT = {} ############################################################################## # 2. 多级菜单函数 ############################################################################## def get_top_categories(furry_data): return sorted(list(furry_data.keys())) def get_sub_categories(furry_data, top_category): if top_category in furry_data: return sorted(list(furry_data[top_category].keys())) return [] def get_species_list(furry_data, top_category, sub_category): if top_category in furry_data and sub_category in furry_data[top_category]: return sorted(furry_data[top_category][sub_category]) return [] ############################################################################## # 3. 合并规则文本 ############################################################################## def merge_transform_rules_into_prompt(rules_json): """ 将 transform_rules.json 中的相关字段转为统一文本,便于放到 system_prompt。 你也可以分段加入。 """ if not rules_json: return "(No transform rules loaded)" # 1) 读取 gender_transform gt = rules_json.get("gender_transform", {}) # 注意:这里不一定要用 male_tag_rules, replacements 等字段, # 仅做一个演示将 gt 转成文本 text_parts = [] text_parts.append("==== GENDER TRANSFORM RULES ====") text_parts.append(str(gt)) # 直接转为字符串或更有条理地拼写 # 2) shared_preferences sp = rules_json.get("shared_preferences", {}) text_parts.append("==== SHARED PREFERENCES ====") text_parts.append(str(sp)) # 3) table_details td = rules_json.get("table_details", {}) text_parts.append("==== TABLE DETAILS (PRO ACTIONS) ====") text_parts.append(str(td)) return "\n".join(text_parts) RULES_TEXT_FULL = merge_transform_rules_into_prompt(TRANSFORM_DICT) ############################################################################## # 4. 强制替换逻辑 ############################################################################## # 建立一个映射:用户在前端选 "Trans_to_Male" -> 我们用 transform_rules.json["override_conflicting_descriptors"]["female_to_male"] 等 transform_map = { "Trans_to_Male": "female_to_male", "Trans_to_Female": "male_to_female", "Trans_to_Mannequin": "any_to_genderless", "Trans_to_Intersex": "any_to_intersex", "Trans_to_Furry": "trans_to_furry", # 也可在这里加: if we want forced replacement for "she->anthro_female" etc. } def forced_replace(prompt, direction): """ 根据 TRANSFORM_DICT["override_conflicting_descriptors"] 下的映射, 对 prompt 中的词做强制替换。 """ # direction 是 "female_to_male" / "male_to_female" / ... override_section = TRANSFORM_DICT.get("override_conflicting_descriptors", {}) replacements = override_section.get(direction, {}) if not replacements: # 该方向没有映射,直接返回 return prompt # 逐条用正则整词替换 for old, new in replacements.items(): # \b 表示单词边界,(?i) 表示不区分大小写 pattern = r"(?i)\b" + re.escape(old) + r"\b" prompt = re.sub(pattern, new, prompt) return prompt ############################################################################## # 5. 核心 GPT/DeepSeek 调用 ############################################################################## def generate_transformed_output(prompt, gender_option, top_cat, sub_cat, species_item, api_mode, api_key): """ 读取 transform_rules.json / GENDER_RULES / FurryData: 只输出两段:(tags)\n\n(description) """ if not api_key: return "Error: No API Key provided." if api_mode == "GPT": base_url = None model_name = "gpt-3.5-turbo" else: base_url = "https://api.deepseek.com" model_name = "deepseek-chat" client = OpenAI(api_key=api_key) if base_url: client.base_url = base_url # 如果选 Furry: if gender_option == "Trans_to_Furry": furry_path = f"{top_cat} > {sub_cat} > {species_item}" if (top_cat and sub_cat and species_item) else "unknown" extra_line = f"\nFurry chosen: {furry_path}\n" else: extra_line = "" # 根据 gender_option,取对应 GENDER_RULES gender_specific_rule = "" if gender_option == "Trans_to_Male": gender_specific_rule = GENDER_RULES.get("male", "") elif gender_option == "Trans_to_Female": gender_specific_rule = GENDER_RULES.get("female", "") elif gender_option == "Trans_to_Mannequin": gender_specific_rule = GENDER_RULES.get("genderless", "") elif gender_option == "Trans_to_Intersex": gender_specific_rule = GENDER_RULES.get("intersex", "") system_prompt = f""" You are a creative assistant that transforms the user's base prompt to reflect correct gender/furry transformations. Follow these references: 1) Detailed Transform Rules (transform_rules.json): {RULES_TEXT_FULL} 2) Additional short gender rules (gender_rules.json): {gender_specific_rule} {extra_line} Instructions: - Original prompt tags: {prompt} - Convert them into NEW combined tags, removing or replacing conflicting ones. - Only output two parts: 1) One line of final tags in parentheses, e.g. (male, short hair, dynamic pose, ...) 2) A blank line. 3) Then 3~6 sentences of imaginative scene description in English. - No extra lines, no headings, no 'gender:' or 'base_prompt:'. - End of instructions. """.strip() try: resp = client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": "Generate final tags and description now."} ], ) return resp.choices[0].message.content.strip() except Exception as e: return f"{api_mode} generation failed. Error: {e}" ############################################################################## # 6. 翻译函数 ############################################################################## def translate_text(content, lang, api_mode, api_key): if not api_key: return "Error: No API Key provided." if not content.strip(): return "" if api_mode == "GPT": base_url = None model_name = "gpt-3.5-turbo" else: base_url = "https://api.deepseek.com" model_name = "deepseek-chat" client = OpenAI(api_key=api_key) if base_url: client.base_url = base_url translate_system_prompt = f""" You are a translator. Translate the following text to {lang}, keeping parentheses line and blank line if present. No extra headings. """.strip() try: resp = client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": translate_system_prompt}, {"role": "user", "content": content} ], ) return resp.choices[0].message.content.strip() except Exception as e: return f"{api_mode} translation failed. Error: {e}" ############################################################################## # 7. Gradio 界面 ############################################################################## def build_interface(): with gr.Blocks() as demo: gr.Markdown("## Prompt Trans-Tool - 提示词物种性别转换器") with gr.Row(): with gr.Column(): api_mode = gr.Radio( label="Select API 选择API厂商 (GPT/DeepSeek)", choices=["GPT", "DeepSeek"], value="GPT" ) api_key = gr.Textbox( label="API Key", type="password", placeholder="Input your GPT or DeepSeek Key" ) gender_option = gr.Radio( label="Trans-Option 选择转换目标", choices=[ "Trans_to_Male", "Trans_to_Female", "Trans_to_Mannequin", "Trans_to_Intersex", "Trans_to_Furry" ], value="Trans_to_Male" ) top_cat_dd = gr.Dropdown( label="Furry: Top Category", choices=get_top_categories(FURRY_DATA), value=None, visible=False ) sub_cat_dd = gr.Dropdown( label="Furry: Sub Category", choices=[], value=None, visible=False ) species_dd = gr.Dropdown( label="Furry: Species", choices=[], value=None, visible=False ) def show_furry_options(opt): if opt == "Trans_to_Furry": return (gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)) else: return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)) gender_option.change( fn=show_furry_options, inputs=[gender_option], outputs=[top_cat_dd, sub_cat_dd, species_dd] ) def on_top_cat_select(selected): subs = get_sub_categories(FURRY_DATA, selected) return gr.update(choices=subs, value=None) top_cat_dd.change( fn=on_top_cat_select, inputs=[top_cat_dd], outputs=[sub_cat_dd] ) def on_sub_cat_select(top_c, sub_c): sp = get_species_list(FURRY_DATA, top_c, sub_c) return gr.update(choices=sp, value=None) sub_cat_dd.change( fn=on_sub_cat_select, inputs=[top_cat_dd, sub_cat_dd], outputs=[species_dd] ) with gr.Column(): user_prompt = gr.Textbox( label="Original Prompt 原始提示词 (e.g. 1girl, butterfly, solo, ...)", lines=5 ) final_output = gr.Textbox( label="Transformed Output 翻译结果 (tags + description)", lines=10 ) with gr.Row(): translate_lang = gr.Dropdown( label="Translate to Language 翻译语言", choices=["English", "Chinese", "Japanese", "French", "German", "Italian", "Spanish", "Russian", "Dutch", "Persian", "Arabic", "Thai"], value="English" ) translated_text = gr.Textbox( label="Translated Result", lines=10 ) ###################################################################### # 生成 ###################################################################### def on_generate(prompt, gender, tc, sc, spc, mode, key, lang): # 1) 先根据 "gender" 选项判断要执行哪种 forced_replace direction = transform_map.get(gender, None) if direction: # 在提交给 GPT 之前,对 prompt 做强制替换 prompt = forced_replace(prompt, direction) # 2) 再调用原先的 generate_transformed_output merged = generate_transformed_output(prompt, gender, tc, sc, spc, mode, key) # 3) 翻译 trans = translate_text(merged, lang, mode, key) return merged, trans user_prompt.submit( fn=on_generate, inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang], outputs=[final_output, translated_text] ) gen_btn = gr.Button("Generate") gen_btn.click( fn=on_generate, inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang], outputs=[final_output, translated_text] ) return demo if __name__ == "__main__": demo = build_interface() demo.launch()