File size: 11,451 Bytes
bef3741
1e6c6f2
bef3741
 
64322bd
 
0550b9b
64322bd
1e6c6f2
0550b9b
 
1e6c6f2
0550b9b
ceffbde
1e6c6f2
0550b9b
 
1e6c6f2
0550b9b
ceffbde
 
ec75df1
ceffbde
0550b9b
 
 
 
 
 
 
1e6c6f2
0550b9b
ec75df1
0550b9b
 
1e6c6f2
0550b9b
ec75df1
0550b9b
ec75df1
 
 
 
 
 
0550b9b
ec75df1
 
 
 
 
0550b9b
1e6c6f2
 
ec75df1
 
ceffbde
0550b9b
ceffbde
0550b9b
ceffbde
0550b9b
ceffbde
0550b9b
 
 
ec75df1
0550b9b
ec75df1
0550b9b
 
 
ec75df1
 
0550b9b
ec75df1
ceffbde
ec75df1
ceffbde
 
ec75df1
ceffbde
 
 
 
bef3741
64322bd
bef3741
64322bd
ec75df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64322bd
 
0550b9b
ceffbde
64322bd
1e6c6f2
ec75df1
1e6c6f2
64322bd
ec75df1
 
 
1e6c6f2
64322bd
ceffbde
64322bd
0550b9b
64322bd
ec75df1
64322bd
 
1e6c6f2
0550b9b
ceffbde
64322bd
ceffbde
 
 
 
 
 
64322bd
bef3741
64322bd
bef3741
64322bd
ec75df1
 
 
 
 
 
64322bd
ceffbde
 
64322bd
ec75df1
 
0550b9b
64322bd
ceffbde
0f91f56
ceffbde
64322bd
 
ec75df1
64322bd
1e6c6f2
64322bd
ec75df1
64322bd
 
 
ec75df1
64322bd
ec75df1
64322bd
0550b9b
64322bd
ec75df1
64322bd
0550b9b
ec75df1
 
64322bd
0550b9b
ec75df1
64322bd
ec75df1
64322bd
bef3741
 
 
 
0550b9b
64322bd
0550b9b
 
 
ec75df1
0550b9b
ec75df1
0550b9b
 
 
 
 
ec75df1
0550b9b
 
 
64322bd
0550b9b
ec75df1
0550b9b
64322bd
0f91f56
64322bd
1e6c6f2
ec75df1
0550b9b
 
ec75df1
 
 
0550b9b
ec75df1
 
 
0550b9b
 
 
 
 
1e6c6f2
ec75df1
0550b9b
 
 
 
 
 
 
 
 
ec75df1
0550b9b
 
 
 
 
 
 
 
64322bd
ec75df1
64322bd
1e6c6f2
ec75df1
 
 
64322bd
ec75df1
 
1e6c6f2
64322bd
 
ec75df1
64322bd
0550b9b
ec75df1
ceffbde
1e6c6f2
64322bd
ec75df1
 
1e6c6f2
64322bd
 
0550b9b
ec75df1
0550b9b
ec75df1
 
 
0550b9b
ec75df1
 
05bf4a2
ec75df1
1e6c6f2
64322bd
0550b9b
ec75df1
64322bd
ec75df1
 
 
64322bd
0550b9b
ec75df1
64322bd
 
 
 
ec75df1
64322bd
1e6c6f2
bef3741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import json
import gradio as gr
from openai import OpenAI

##############################################################################
# 1. 读取外部文件: furry_species.json & gender_rules.json
##############################################################################
try:
    with open("furry_species.json", "r", encoding="utf-8") as f:
        FURRY_DATA = json.load(f)
except:
    FURRY_DATA = {}

try:
    with open("gender_rules.json", "r", encoding="utf-8") as f:
        GENDER_RULES = json.load(f)
except:
    GENDER_RULES = {}

##############################################################################
# 2. 多级菜单构造函数
##############################################################################
def get_top_categories(furry_data):
    return sorted(list(furry_data.keys()))

def get_sub_categories(furry_data, top_category):
    if top_category in furry_data:
        return sorted(list(furry_data[top_category].keys()))
    return []

def get_species_list(furry_data, top_category, sub_category):
    if top_category in furry_data and sub_category in furry_data[top_category]:
        return sorted(furry_data[top_category][sub_category])
    return []

##############################################################################
# 3. 核心调用:GPT 或 DeepSeek
##############################################################################
def generate_transformed_output(
    prompt,        # 原始 Prompt,如 "1girl, butterfly, solo..."
    gender_option, # 转换目标
    top_cat, sub_cat, species_item,
    api_mode, api_key
):
    """
    根据指定的性别/物种等规则,让 GPT/DeepSeek 输出仅两段内容:
     (转化后tags)

     转化后描述 (3~6句)
    不展示原始 prompt/base_prompt/gender: ... 等信息。
    """
    if not api_key:
        return "Error: No API Key provided."

    # 根据 gender_option 选对应的 rule
    if gender_option == "Trans_to_Male":
        rule_text = GENDER_RULES.get("male", "")
    elif gender_option == "Trans_to_Female":
        rule_text = GENDER_RULES.get("female", "")
    elif gender_option == "Trans_to_Mannequin":
        rule_text = GENDER_RULES.get("genderless", "")
    elif gender_option == "Trans_to_Intersex":
        rule_text = GENDER_RULES.get("intersex", "")
    else:
        # Furry
        # 你可以综合 male/female/intersex/genderless,也可以有专门 furry 的说明
        rule_text = (
            GENDER_RULES.get("male", "") + "\n\n"
            + GENDER_RULES.get("female", "") + "\n\n"
            + GENDER_RULES.get("intersex", "") + "\n\n"
            + GENDER_RULES.get("genderless", "")
        )
        # 如果想在规则中附加选定的物种信息:
        if top_cat and sub_cat and species_item:
            rule_text += f"\nFurry species: {top_cat} > {sub_cat} > {species_item}\n"

    # 选定 GPT or DeepSeek
    if api_mode == "GPT":
        base_url = None
        model_name = "gpt-3.5-turbo"  # 可改成 "gpt-4"
    else:
        base_url = "https://api.deepseek.com"
        model_name = "deepseek-chat"

    client = OpenAI(api_key=api_key)
    if base_url:
        client.base_url = base_url

    # 构造 System Prompt:要求只输出两段;第一行(转化后tags),空行,随后3~6句描述
    # 让它把 prompt 中的 tags 进行「合并、替换、去重、增加」等处理
    system_prompt = f"""
You are a creative assistant that modifies the user's base prompt tags 
to reflect the correct gender/furry transformations, following these rules:

{rule_text}

Steps:
1) The original prompt tags are: {prompt}
2) Convert them into NEW combined tags that reflect the requested transformation. 
   (Remove or replace conflicting tags, unify synonyms, add any essential tags 
    for {gender_option} or for the selected furry species.)
3) Output EXACTLY two parts:
   - First line: the final, consolidated tags in parentheses (e.g. (male, solo, ...)).
   - Then a blank line.
   - Then a short imaginative scene description (3 to 6 sentences). 
4) Do NOT include 'gender:' or 'base_prompt:' or any headings or extra lines. 
5) Output everything in English.
6) Do not reference these steps in the final answer.
""".strip()

    try:
        resp = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": "Generate the final tags and description now."},
            ],
        )
        # 结果中仅包含 (tags)\n\n(description)
        result = resp.choices[0].message.content.strip()
        return result

    except Exception as e:
        return f"{api_mode} generation failed. Error: {e}"

def translate_text(content, lang, api_mode, api_key):
    """
    对上一步的 (tags)\n\n(description) 做翻译,保持格式
    """
    if not api_key:
        return "Error: No API Key provided."
    if not content.strip():
        return ""

    if api_mode == "GPT":
        base_url = None
        model_name = "gpt-3.5-turbo"
    else:
        base_url = "https://api.deepseek.com"
        model_name = "deepseek-chat"

    client = OpenAI(api_key=api_key)
    if base_url:
        client.base_url = base_url

    translate_system_prompt = f"""
You are a translator. Translate the following text to {lang}, 
preserving the parentheses line and blank lines if present. 
Do not add extra headings.
""".strip()

    try:
        resp = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": translate_system_prompt},
                {"role": "user", "content": content},
            ],
        )
        return resp.choices[0].message.content.strip()
    except Exception as e:
        return f"{api_mode} translation failed. Error: {e}"

##############################################################################
# 4. Gradio 前端
##############################################################################
def build_interface():
    with gr.Blocks() as demo:
        gr.Markdown("## Prompt Transformer - 不显示原Prompt与gender/base_prompt,只输出新tags和描述 (GPT/DeepSeek)")

        with gr.Row():
            with gr.Column():
                # 选择 GPT/DeepSeek
                api_mode = gr.Radio(
                    label="Choose API (GPT or DeepSeek)",
                    choices=["GPT", "DeepSeek"],
                    value="GPT"
                )
                # 输入 API Key
                api_key = gr.Textbox(
                    label="API Key",
                    type="password",
                    placeholder="Enter your GPT or DeepSeek Key here"
                )

                # 性别/Furry
                gender_option = gr.Radio(
                    label="Gender / Furry Conversion",
                    choices=[
                        "Trans_to_Male",
                        "Trans_to_Female",
                        "Trans_to_Mannequin",
                        "Trans_to_Intersex",
                        "Trans_to_Furry"
                    ],
                    value="Trans_to_Male"
                )

                # 若选 Furry -> 多级菜单
                top_cat_dd = gr.Dropdown(
                    label="Furry: Top Category",
                    choices=get_top_categories(FURRY_DATA),
                    value=None,
                    visible=False
                )
                sub_cat_dd = gr.Dropdown(
                    label="Furry: Sub Category",
                    choices=[],
                    value=None,
                    visible=False
                )
                species_dd = gr.Dropdown(
                    label="Furry: Species",
                    choices=[],
                    value=None,
                    visible=False
                )

                # 当性别选项切到 Furry 时,显示下拉,否则隐藏
                def show_furry_options(chosen):
                    if chosen == "Trans_to_Furry":
                        return (gr.update(visible=True),
                                gr.update(visible=True),
                                gr.update(visible=True))
                    else:
                        return (gr.update(visible=False),
                                gr.update(visible=False),
                                gr.update(visible=False))
                gender_option.change(
                    fn=show_furry_options,
                    inputs=[gender_option],
                    outputs=[top_cat_dd, sub_cat_dd, species_dd]
                )

                # 主分类 -> 子分类
                def on_top_cat_select(selected):
                    subs = get_sub_categories(FURRY_DATA, selected)
                    return gr.update(choices=subs, value=None)
                top_cat_dd.change(
                    fn=on_top_cat_select,
                    inputs=[top_cat_dd],
                    outputs=[sub_cat_dd]
                )

                # 子分类 -> 物种
                def on_sub_cat_select(top_c, sub_c):
                    sp = get_species_list(FURRY_DATA, top_c, sub_c)
                    return gr.update(choices=sp, value=None)
                sub_cat_dd.change(
                    fn=on_sub_cat_select,
                    inputs=[top_cat_dd, sub_cat_dd],
                    outputs=[species_dd]
                )

            # 输入 prompt & 输出
            with gr.Column():
                user_prompt = gr.Textbox(
                    label="原始 Prompt (Base Tags)",
                    lines=5,
                    placeholder="e.g. 1girl, butterfly, solo, flower..."
                )
                final_output = gr.Textbox(
                    label="(转化后Tags)\n\n(转化后描述)",
                    lines=10
                )

        # 翻译
        with gr.Row():
            translate_lang = gr.Dropdown(
                label="翻译语言",
                choices=["English", "Chinese", "Japanese", "French", "German", "Spanish"],
                value="English"
            )
            translated_result = gr.Textbox(
                label="翻译后的结果",
                lines=10
            )

        ######################################################################
        # 事件
        ######################################################################
        def on_generate(prompt, gender, tc, sc, sp, mode, key, lang):
            # 1) 生成新的 (tags) + 描述
            merged = generate_transformed_output(prompt, gender, tc, sc, sp, mode, key)
            # 2) 翻译
            trans = translate_text(merged, lang, mode, key)
            return merged, trans

        # 回车提交
        user_prompt.submit(
            fn=on_generate,
            inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
            outputs=[final_output, translated_result]
        )
        # 点击按钮
        btn = gr.Button("生成 / Generate")
        btn.click(
            fn=on_generate,
            inputs=[user_prompt, gender_option, top_cat_dd, sub_cat_dd, species_dd, api_mode, api_key, translate_lang],
            outputs=[final_output, translated_result]
        )

    return demo


if __name__ == "__main__":
    demo = build_interface()
    demo.launch()