File size: 11,797 Bytes
b5deaf1
c529966
 
b5deaf1
 
c529966
09dea95
c529966
db83efb
b5deaf1
0d660bd
 
 
 
 
 
b5deaf1
9a73c5d
db83efb
b5deaf1
0d660bd
 
b5deaf1
83747e9
c529966
 
db83efb
 
b5deaf1
0d660bd
b5deaf1
0d660bd
 
 
 
 
 
 
 
 
b5deaf1
 
0d660bd
db83efb
e3a12d5
 
 
 
0d660bd
db83efb
e3a12d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5deaf1
 
1031c5b
0d660bd
b5deaf1
0d660bd
 
 
 
 
 
 
2bf1ef6
0d660bd
 
 
 
 
309c5cc
0d660bd
db83efb
09dea95
 
0c62c4d
0d660bd
 
 
 
 
0c62c4d
e3a12d5
0d660bd
 
0c62c4d
 
0d660bd
 
 
 
 
0c62c4d
0d660bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c529966
0d660bd
09dea95
0d660bd
09dea95
0d660bd
09dea95
0d660bd
 
 
 
09dea95
0d660bd
 
09dea95
 
0d660bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a12d5
09dea95
 
e3a12d5
0d660bd
 
 
 
 
 
 
 
 
09dea95
 
e3a12d5
0d660bd
 
 
 
 
 
 
 
 
 
 
 
0c62c4d
09dea95
 
ad04a72
b5deaf1
0d660bd
db83efb
b5deaf1
 
 
 
 
 
 
 
 
 
af08824
db83efb
b5deaf1
1031c5b
b5deaf1
db83efb
09dea95
ad04a72
b5deaf1
 
 
0d660bd
db83efb
 
 
b5deaf1
db83efb
b5deaf1
db83efb
 
 
 
 
 
 
 
 
 
 
0d660bd
e3a12d5
db83efb
 
 
e3a12d5
db83efb
e3a12d5
db83efb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Module to search and list emails from Gmail."""
import os
import re
import base64
from datetime import datetime, timedelta
from venv import logger
from ics import Calendar

# import pandas as pd
from langchain_core.documents import Document
from langchain_community.document_loaders import (
    PyPDFLoader,
    UnstructuredExcelLoader,
    CSVLoader,
    UnstructuredImageLoader,
)

from models.db import vectorstore
# from models.mails import build_gmail_service

SCOPES = ["https://www.googleapis.com/auth/gmail.readonly"]
EMAIL_PATTERN = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"

ATTACHMENTS_DIR = "cache"
os.makedirs(ATTACHMENTS_DIR, exist_ok=True)

# service = build_gmail_service()
def search_emails(service, query):
    """Search emails based on a query."""
    result = service.users().messages().list(userId="me", q=query).execute()
    messages = []
    if "messages" in result:
        messages.extend(result["messages"])
    while "nextPageToken" in result:
        page_token = result["nextPageToken"]
        result = (
            service.users().messages().list(userId="me", q=query, pageToken=page_token).execute()
        )
        if "messages" in result:
            messages.extend(result["messages"])
    return messages


def list_emails(service, messages):
    """
    Processes a list of email messages, extracts metadata, decodes content, and handles attachments.

    Args:
        messages (list): A list of email message dictionaries, where each dictionary contains
                        at least an 'id' key representing the email's unique identifier.

    Returns:
        None: The function processes the emails and adds the extracted documents to a vector store.

    Functionality:
        - Retrieves email details using the Gmail API.
        - Extracts metadata such as sender, recipient, subject, CC, and date.
        - Decodes email content in plain text or HTML format.
        - Handles multipart emails, including attachments.
        - Processes attachments based on their MIME type:
            - PDF files are loaded using PyPDFLoader.
            - Images (PNG, JPEG) are loaded using UnstructuredImageLoader.
            - CSV files are loaded using CSVLoader.
            - Excel files are loaded using UnstructuredExcelLoader.
            - Calendar files (ICS) are parsed to extract event details.
        - Removes HTML tags from email content.
        - Stores processed documents and metadata in a vector store.
        - Deletes temporary files created during attachment processing.

    Notes:
        - The function assumes the existence of a global `service` object for Gmail API interactions.
        - The `vectorstore.add_documents` method is used to store the processed documents.
        - Attachments are temporarily saved in a directory specified by `ATTACHMENTS_DIR` and deleted after processing.
        - The function logs information about attachments being downloaded.
    """
    ids = []
    documents = []
    for message in messages:
        msg = service.users().messages().get(userId="me", id=message["id"], format="full").execute()
        metadata = {}
        for header in msg["payload"]["headers"]:
            if header["name"] == "From":
                metadata["from"] = header["value"]
            elif header["name"] == "To":
                metadata["to"] = header["value"]
            elif header["name"] == "Subject":
                metadata["subject"] = header["value"]
                print(f"subject: {metadata["subject"]}")
            elif header["name"] == "Cc":
                metadata["cc"] = header["value"]
        metadata["date"] = datetime.fromtimestamp(int(msg["internalDate"]) / 1000).strftime(
            "%d/%m/%Y %H:%M:%S"
        )
        metadata["user_id"] = service.users().getProfile(userId="me").execute().get("emailAddress")
        metadata["msg_id"] = msg["id"]
        # print(metadata, msg["payload"]["mimeType"])
        ids = []
        documents = []
        mime_types = []
        if msg["payload"]["mimeType"] in [
            "multipart/alternative",
            "multipart/related",
            "multipart/mixed",
        ]:
            mime_types = []
            attach_docs = []
            for part in msg["payload"]["parts"]:
                print("mimeType: ", part["mimeType"])
                mime_types.append(part["mimeType"])
                if part["mimeType"] == "text/plain" and "text/html" not in mime_types:
                    body = base64.urlsafe_b64decode(part["body"]["data"]).decode("utf-8")
                    body = re.sub(r"<[^>]+>", "", body)  # Remove HTML tags
                    metadata["mimeType"] = part["mimeType"]
                    documents.append(Document(page_content=body, metadata=metadata))
                    ids.append(msg["id"])
                elif part["mimeType"] == "text/html" and "text/plain" not in mime_types:
                    body = base64.urlsafe_b64decode(part["body"]["data"]).decode("utf-8")
                    body = re.sub(r"<[^>]+>", "", body)
                    metadata["mimeType"] = part["mimeType"]
                    documents.append(Document(page_content=body, metadata=metadata))
                    ids.append(msg["id"])
                if part["filename"]:
                    attachment_id = part["body"]["attachmentId"]
                    logger.info("Downloading attachment: %s", part["filename"])
                    attachment = (
                        service.users()
                        .messages()
                        .attachments()
                        .get(userId="me", messageId=message["id"], id=attachment_id)
                        .execute()
                    )
                    file_data = base64.urlsafe_b64decode(attachment["data"].encode("UTF-8"))
                    path = os.path.join(".", ATTACHMENTS_DIR, part["filename"])
                    with open(path, "wb") as f:
                        f.write(file_data)
                    if part["mimeType"] == "application/pdf":
                        attach_docs = PyPDFLoader(path).load()
                    elif part["mimeType"] == "image/png" or part["mimeType"] == "image/jpeg":
                        attach_docs = UnstructuredImageLoader(path).load()
                    elif part["filename"].endswith(".csv"):
                        attach_docs = CSVLoader(path).load()
                    elif (
                        part["mimeType"]
                        == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                    ):
                        attach_docs = UnstructuredExcelLoader(path).load()
                    elif part["mimeType"] == "application/ics":
                        with open(path, "r", encoding="utf-8") as f:
                            calendar = Calendar(f.read())
                        for event in calendar.events:
                            documents.append(
                                Document(
                                    page_content=f"Event: {event.name}\nDescription: {event.description}\nStart: {event.begin}\nEnd: {event.end}",
                                    metadata={
                                        "attachment": part["filename"],
                                        "mimeType": part["mimeType"],
                                        "location": event.location,
                                        "created": event.created.strftime("%d/%m/%Y %H:%M:%S"),
                                        "last_modified": event.last_modified.strftime(
                                            "%d/%m/%Y %H:%M:%S"
                                        ),
                                        "start": event.begin.strftime("%d/%m/%Y %H:%M:%S"),
                                        "end": event.end.strftime("%d/%m/%Y %H:%M:%S"),
                                    },
                                )
                            )
                            ids.append(f"{msg['id']}_{attachment_id}")
                    if os.path.exists(path):
                        os.remove(path)
                    for index, document in enumerate(attach_docs or []):
                        document.metadata["mimeType"] = part["mimeType"]
                        if "page_label" in document.metadata:
                            document.metadata["page"] = document.metadata["page_label"]
                        document.metadata["attachment"] = part["filename"]
                        document.metadata = {
                            key: value
                            for key, value in document.metadata.items()
                            if key in ["attachment", "page"]
                        }
                        document.metadata.update(metadata)
                        documents.append(document)
                        ids.append(f"{msg['id']}_{attachment_id}_{index}")
        elif msg["payload"]["mimeType"] == "text/plain" and "data" in msg["payload"]["body"]:
            body = base64.urlsafe_b64decode(msg["payload"]["body"]["data"]).decode("utf-8")
            body = re.sub(r"<[^>]+>", "", body)
            metadata["mimeType"] = msg["payload"]["mimeType"]
            documents.append(Document(page_content=body, metadata=metadata))
            ids.append(msg["id"])
        elif msg["payload"]["mimeType"] == "text/html" and "data" in msg["payload"]["body"]:
            body = base64.urlsafe_b64decode(msg["payload"]["body"]["data"]).decode("utf-8")
            body = re.sub(r"<[^>]+>", "", body)
            metadata["mimeType"] = msg["payload"]["mimeType"]
            documents.append(Document(page_content=body, metadata=metadata))
            ids.append(msg["id"])
        if "multipart/alternative" in mime_types and len(mime_types) == 1:
            print("Only multipart/alternative found in the email.")
        else:
            vectorstore.add_documents(documents=documents, ids=ids)


def collect(service, query=(datetime.today() - timedelta(days=21)).strftime("after:%Y/%m/%d")):
    """
    Main function to search and list emails from Gmail.

    This function builds a Gmail service, constructs a query to search for emails
    received in the last 14 days, and lists the found emails. If no emails are found,
    it prints a message indicating so.

    Returns:
        None
    """
    query = "subject:Re: Smartcareers algorithm debug and improvement'"
    emails = search_emails(service, query)
    if emails:
        print("Found %d emails:\n", len(emails))
        logger.info("Found %d emails after two_weeks_ago:\n", len(emails))
        list_emails(service, emails)
        logger.info("Listing emails...")
        return f"{len(emails)} emails added to the collection."
    else:
        logger.info("No emails found after two weeks ago.")


# def get_documents(self):
#     """
#     Main function to list emails from the database.

#     This function lists all emails stored in the database.

#     Returns:
#         None
#     """
#     data = vectorstore.get()
#     df = pd.DataFrame(
#         {"ids": data["ids"], "documents": data["documents"], "metadatas": data["metadatas"]}
#     )
#     df.to_excel("collection_data.xlsx", index=False)
#     df = pd.concat(
#         [df.drop("metadatas", axis=1), df["metadatas"].apply(pd.Series)], axis=1
#     ).to_excel("collection_data_expand.xlsx", index=False)


# def get(self):
#     """
#     Main function to list emails from the database.

#     This function lists all emails stored in the database.

#     Returns:
#         None
#     """
#     data = vectorstore.get()
#     df = pd.DataFrame(
#         {"id": data["ids"], "documents": data["documents"], "metadatas": data["metadatas"]}
#     )
#     return df.to_dict(orient="records")