gavinzli's picture
Fix publishDate parsing to handle errors and localize timezone in vectorize function
7a785e1
"""Module to upsert data into AstraDB"""
import os
import logging
import time
import tiktoken
from pytz import timezone
import pandas as pd
from langchain_astradb import AstraDBVectorStore
# from langchain_openai import AzureOpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import DataFrameLoader
# from astrapy import DataAPIClient
# from astrapy.info import CollectionVectorServiceOptions
# from astrapy.exceptions import CollectionAlreadyExistsException
# from astrapy.core.api import APIRequestError
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s',
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.ERROR)
# from astrapy import AstraClient
# ASTRA_DB_APPLICATION_TOKEN = os.environ['ASTRA_DB_APPLICATION_TOKEN']
# ASTRA_DB_API_ENDPOINT = os.environ['ASTRA_DB_API_ENDPOINT']
# COLLECTION_NAME = "article"
# VECTOR_OPTIONS = CollectionVectorServiceOptions(
# provider="azureOpenAI",
# model_name="text-embedding-3-small",
# authentication={"providerKey": "AZURE_OPENAI_API_KEY"},
# parameters={
# "resourceName": "openai-oe",
# "deploymentId": "text-embedding-3-small",
# },
# )
# client = DataAPIClient(token=ASTRA_DB_APPLICATION_TOKEN)
# database = client.get_database(ASTRA_DB_API_ENDPOINT)
# embedding = AzureOpenAIEmbeddings(
# api_version="2024-07-01-preview",
# azure_endpoint="https://openai-oe.openai.azure.com/")
vstore = AstraDBVectorStore(
# collection_vector_service_options=CollectionVectorServiceOptions(
# provider="azureOpenAI",
# model_name="text-embedding-3-small",
# authentication={
# "providerKey": "AZURE_OPENAI_API_KEY",
# },
# parameters={
# "resourceName": "openai-oe",
# "deploymentId": "text-embedding-3-small",
# },
# ),
namespace="default_keyspace",
collection_name="article",
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"],
autodetect_collection=True)
def token_length(text):
"""
Calculates length of encoded text using the tokenizer for the "text-embedding-3-small" model.
Args:
text (str): The input text to be tokenized and measured.
Returns:
int: The length of the encoded text.
"""
tokenizer = tiktoken.encoding_for_model("text-embedding-3-small")
return len(tokenizer.encode(text))
def add_documents_with_retry(chunks, ids, max_retries=3):
"""
Attempts to add documents to the vstore with a specified number of retries.
Parameters:
chunks (list): The list of document chunks to be added.
ids (list): The list of document IDs corresponding to the chunks.
max_retries (int, optional): The maximum number of retry attempts. Default is 3.
Raises:
Exception: If the operation fails after the maximum number of retries, the exception is logged.
"""
for attempt in range(max_retries):
try:
vstore.add_documents(chunks, ids=ids)
except (ConnectionError, TimeoutError) as e:
logging.info("Attempt %d failed: %s", attempt + 1, e)
if attempt < max_retries - 1:
time.sleep(10)
else:
logging.error("Max retries reached. Operation failed.")
logging.error(ids)
print(ids)
def vectorize(article):
"""
Process the given article.
Parameters:
article (DataFrame): The article to be processed.
Returns:
None
"""
article['id'] = str(article['id'])
if isinstance(article, dict):
article = [article] # Convert single dictionary to list of dictionaries
df = pd.DataFrame(article)
df = df[['id', 'publishDate', 'author', 'category',
'content', 'referenceid', 'site', 'title', 'link']]
df['publishDate'] = pd.to_datetime(df['publishDate'], errors='coerce')
df['publishDate'] = df['publishDate'].dt.tz_localize('UTC', ambiguous='NaT', nonexistent='NaT')
df['publishDate'] = df['publishDate'].dt.tz_localize(None).dt.tz_localize(timezone('Etc/GMT+8'))
documents = DataFrameLoader(df, page_content_column="content").load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=token_length,
is_separator_regex=False,
separators=["\n\n", "\n", "\t", "\\n"] # Logical separators
)
chunks = text_splitter.split_documents(documents)
ids = []
for index, chunk in enumerate(chunks):
_id = f"{chunk.metadata['id']}-{str(index)}"
ids.append(_id)
try:
add_documents_with_retry(chunks, ids)
except (ConnectionError, TimeoutError, ValueError) as e:
logging.error("Failed to add documents: %s", e)
# def vectorize(article):
# """
# Process the given article.
# Parameters:
# article (DataFrame): The article to be processed.
# Returns:
# None
# """
# article['id'] = str(article['id'])
# if isinstance(article, dict):
# article = [article] # Convert single dictionary to list of dictionaries
# df = pd.DataFrame(article)
# df = df[['id','site','title','titleCN','category','author','content',
# 'publishDate','link']]
# df['publishDate'] = pd.to_datetime(df['publishDate'])
# loader = DataFrameLoader(df, page_content_column="content")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=800,
# chunk_overlap=20,
# length_function=len,
# is_separator_regex=False,
# )
# chunks = text_splitter.split_documents(documents)
# ids = []
# for chunk in chunks:
# _id = f"{chunk.metadata['id']}-{str(uuid.uuid5(uuid.NAMESPACE_OID,chunk.page_content))}"
# ids.append(_id)
# inserted_ids = vstore.add_documents(chunks, ids=ids)
# print(inserted_ids)
# logging.info(inserted_ids)