gavinzli
commit
ec13f7a
raw
history blame
7.12 kB
import requests
import uuid
import time
import urllib.request
from lxml import etree
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
translator = Translator()
def datemodifier(date_string):
"""Date Modifier Function"""
try:
to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
return time.strftime("%Y-%m-%d",to_date)
except:
return False
def fetch_url(url):
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
return None
def translist(infolist):
"""Translist Function"""
out = list(filter(lambda s: s and
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
return out
def encode(content):
"""Encode Function"""
text = ''
for element in content[:1]:
if isinstance(element, etree._Element):
subelement = etree.tostring(element).decode()
subpage = etree.HTML(subelement)
tree = subpage.xpath('//text()')
line = ''.join(translist(tree)).\
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
else:
line = element
text += line
index = text.find('打印本页')
if index != -1:
text = text[:index]
return text
def extract_from_pdf(url):
# Send a GET request to the URL and retrieve the PDF content
response = requests.get(url)
pdf_content = response.content
# Save the PDF content to a local file
with open("downloaded_file.pdf", "wb") as f:
f.write(pdf_content)
# Open the downloaded PDF file and extract the text
with open("downloaded_file.pdf", "rb") as f:
pdf_reader = PdfReader(f)
num_pages = len(pdf_reader.pages)
extracted_text = ""
extracted_text_eng = ""
for page in range(num_pages):
text = pdf_reader.pages[page].extract_text()
if text and text[0].isdigit():
text = text[1:]
first_newline_index = text.find('\n')
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
extracted_text_eng += translator.translate(text, dest='en').text
extracted_text += text
return extracted_text, extracted_text_eng
"""Upload file to dynamoDB"""
# import datetime
from datetime import datetime, timedelta
from decimal import Decimal
import boto3
AWS_ACCESS_KEY_ID = "AKIAQFXZMGHQYXKWUDWR"
AWS_SECRET_ACCESS_KEY = "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"
def get_db_connection():
"""Get dynamoDB connection"""
dynamodb = boto3.resource(
service_name='dynamodb',
region_name='us-east-1',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
)
return dynamodb
def upsert_content(report):
"""Upsert the content records"""
dynamodb = get_db_connection()
table = dynamodb.Table('article_china')
# Define the item data
item = {
'id': str(report['id']),
'site': report['site'],
'title': report['title'],
# 'originalSite': report['originalSite'],
# 'originalTitle': report['originalTitle'],
# 'originalContent': report['originalContent'],
'category': report['category'],
# 'author': report['author'],
'content': report['content'],
'publishDate': report['publishDate'],
'link': report['url'],
# 'attachment': report['reporturl'],
# 'authorID': str(report['authorid']),
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
'sentimentLabel': report['sentimentLabel'],
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
}
response = table.put_item(Item=item)
print(response)
i = 0
while i > -1:
if i == 0:
categoryu_url = "http://www.pbc.gov.cn/rmyh/3963412/3963426/index.html"
else:
j = i + 1
categoryu_url = f"http://www.pbc.gov.cn/rmyh/3963412/3963426/index_{j}.html"
i = i + 1
response = requests.get(categoryu_url)
page = etree.HTML(response.text)
urls = page.xpath("//td[contains(@height,'22')]//a[contains(@target, '_blank')]/@href")
urls = [item for item in urls if item.startswith("/rmyh/")]
for url in urls:
try:
url = "http://www.pbc.gov.cn" + url
article = {}
response = requests.get(url)
response.encoding = 'utf-8'
page = etree.HTML(response.text)
article['originalContent'] = encode(page.xpath("//div[@class='mainw950']//td[@class='content']/font[@class='zoom1']//p"))
content_eng = ''
for element in article['originalContent'].split("。"):
content_eng += translator.translate(element, dest='en').text + ' '
article['content'] = content_eng
article['site'] = "The People's Bank of China"
article['originalSite'] = "中国人民银行"
article['originalTitle'] = page.xpath("//title/text()")[0]
article['title'] = translator.translate(article['originalTitle'], dest='en').text
article['url'] = url
article['category']= "Policy Interpretation"
article['publishDate'] = datemodifier(page.xpath("//meta[@name = '页面生成时间']/@content")[0])
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(article['publishDate'],"%Y-%m-%d")), "%Y-%m-%d")
if parsed_datetime < (datetime.today() - timedelta(days=183)):
i = -1
else:
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
label_dict = {
"positive": "+",
"negative": "-",
"neutral": "0",
}
sentiment_score = 0
maximum_value = 0
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
sentiment_label = None
for sentiment_dict in raw_sentiment[0]:
value = sentiment_dict["score"]
if value > maximum_value:
sentiment_label = sentiment_dict["label"]
maximum_value = value
if sentiment_dict["label"] == "positive":
sentiment_score = sentiment_score + value
if sentiment_dict["label"] == "negative":
sentiment_score = sentiment_score - value
else:
sentiment_score = sentiment_score + 0
article['sentimentScore'] = sentiment_score
article['sentimentLabel'] = label_dict[sentiment_label]
upsert_content(article)
except Exception as error:
print(error)