gavinzli
commit
ec13f7a
raw
history blame
15.8 kB
import requests
import uuid
import time
import urllib.request
from datetime import datetime, timedelta
from decimal import Decimal
import boto3
import os
from lxml import etree
from googletrans import Translator
from transformers import pipeline
from PyPDF2 import PdfReader
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
translator = Translator()
def datemodifier(date_string):
"""Date Modifier Function"""
try:
to_date = time.strptime(date_string,"%Y-%m-%d %H:%M:%S")
return time.strftime("%Y-%m-%d",to_date)
except:
return False
def datemodifier_gov(date_string):
"""Date Modifier Function"""
try:
to_date = time.strptime(date_string,"%Y-%m-%d-%H:%M:%S")
return time.strftime("%Y-%m-%d",to_date)
except:
return False
def fetch_url(url):
response = requests.get(url)
if response.status_code == 200:
return response.text
else:
return None
def translist(infolist):
"""Translist Function"""
out = list(filter(lambda s: s and
(isinstance (s,str) or len(s.strip()) > 0), [i.strip() for i in infolist]))
return out
def encode(content):
"""Encode Function"""
text = ''
for element in content:
if isinstance(element, etree._Element):
subelement = etree.tostring(element).decode()
subpage = etree.HTML(subelement)
tree = subpage.xpath('//text()')
line = ''.join(translist(tree)).\
replace('\n','').replace('\t','').replace('\r','').replace(' ','').replace('\u3000',' ').replace('\xa0','').strip()
else:
line = element
text += line
return text
def extract_from_pdf(url):
# Send a GET request to the URL and retrieve the PDF content
response = requests.get(url)
pdf_content = response.content
# Save the PDF content to a local file
with open("downloaded_file.pdf", "wb") as f:
f.write(pdf_content)
# Open the downloaded PDF file and extract the text
with open("downloaded_file.pdf", "rb") as f:
pdf_reader = PdfReader(f)
num_pages = len(pdf_reader.pages)
extracted_text = ""
for page in range(num_pages):
text = pdf_reader.pages[page].extract_text()
if text and text[0].isdigit():
text = text[1:]
first_newline_index = text.find('\n')
text = text[:first_newline_index+1].replace('\n', ' ') + text[first_newline_index+1:].replace('\n', '')
extracted_text += text
return extracted_text
def get_db_connection():
"""Get dynamoDB connection"""
dynamodb = boto3.resource(
service_name='dynamodb',
region_name='us-east-1',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
)
return dynamodb
def upsert_content(report):
"""Upsert the content records"""
dynamodb = get_db_connection()
table = dynamodb.Table('article_china')
# Define the item data
item = {
'id': str(report['id']),
'site': report['site'],
'title': report['title'],
# 'originalSite': report['originalSite'],
# 'originalTitle': report['originalTitle'],
# 'originalContent': report['originalContent'],
'category': report['category'],
# 'author': report['author'],
'content': report['content'],
'publishDate': report['publishDate'],
'link': report['url'],
# 'attachment': report['reporturl'],
# 'authorID': str(report['authorid']),
'sentimentScore': str(Decimal(report['sentimentScore']).quantize(Decimal('0.01'))),
'sentimentLabel': report['sentimentLabel'],
'LastModifiedDate': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
}
response = table.put_item(Item=item)
print(response)
# categoryu_urls = ["https://www.ndrc.gov.cn/xxgk/zcfb/fzggwl/", "https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/","https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/","https://www.ndrc.gov.cn/xxgk/zcfb/gg/","https://www.ndrc.gov.cn/xxgk/zcfb/tz/","https://www.ndrc.gov.cn/xxgk/zcfb/pifu/","https://www.ndrc.gov.cn/xxgk/zcfb/qt/"]
# for categoryu_url in categoryu_urls:
# req = urllib.request.urlopen(categoryu_url)
# text = req.read()
# html_text = text.decode("utf-8")
# page = etree.HTML(html_text)
# articlelist = page.xpath("//div[contains(@class, 'list')]/ul/li[not(@class = 'empty')]")
# for article in articlelist:
# if isinstance(article, etree._Element):
# subelement = etree.tostring(article).decode()
# subpage = etree.HTML(subelement)
# date = subpage.xpath("//span/text()")[0]
# parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y/%m/%d")), "%Y-%m-%d")
# if parsed_datetime > (datetime.today() - timedelta(days=183)):
# urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
# for url in urls:
# try:
# article = {}
# if "/jd/jd" in url:
# url = url.replace("../../", "https://www.ndrc.gov.cn/xxgk/")
# else:
# url = url.replace("./", categoryu_url)
# req = urllib.request.urlopen(url)
# text = req.read()
# html_text = text.decode("utf-8")
# page = etree.HTML(html_text)
# attachment_urls = page.xpath("//div[contains(@class, 'attachment_r')]//a/@href")
# for attachment_url in attachment_urls:
# if ".pdf" in attachment_url:
# pdf_url = url.rsplit('/', 1)[0] + attachment_url.replace('./','/')
# pdf_content = extract_from_pdf(pdf_url)
# article['originalContent'] = pdf_content
# content_eng = ''
# for element in article['originalContent'].split("。"):
# content_eng += translator.translate(element, dest='en').text + ' '
# article['content'] = content_eng
# article['site'] = "National Development and Reform Commission"
# article['originalSite'] = "国家发展和改革委员会"
# article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
# article['title'] = translator.translate(article['originalTitle'], dest='en').text
# article['url'] = url
# article['category']= "Policy Release"
# article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
# article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
# label_dict = {
# "positive": "+",
# "negative": "-",
# "neutral": "0",
# }
# sentiment_score = 0
# maximum_value = 0
# raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
# sentiment_label = None
# for sentiment_dict in raw_sentiment[0]:
# value = sentiment_dict["score"]
# if value > maximum_value:
# sentiment_label = sentiment_dict["label"]
# maximum_value = value
# if sentiment_dict["label"] == "positive":
# sentiment_score = sentiment_score + value
# if sentiment_dict["label"] == "negative":
# sentiment_score = sentiment_score - value
# else:
# sentiment_score = sentiment_score + 0
# article['sentimentScore'] = sentiment_score
# article['sentimentLabel'] = label_dict[sentiment_label]
# upsert_content(article)
# except Exception as error:
# print(error)
i = 0
while i > -1:
if i == 0:
categoryu_url = "https://www.ndrc.gov.cn/xxgk/jd/jd/index.html"
else:
categoryu_url = f"https://www.ndrc.gov.cn/xxgk/jd/jd/index_{i}.html"
i = i + 1
req = urllib.request.urlopen(categoryu_url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
articlelist = page.xpath("//div[contains(@class, 'list')]/ul/li[not(@class = 'empty')]")
for article in articlelist:
if isinstance(article, etree._Element):
subelement = etree.tostring(article).decode()
subpage = etree.HTML(subelement)
date = subpage.xpath("//span/text()")[0]
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y/%m/%d")), "%Y-%m-%d")
if parsed_datetime < (datetime.today() - timedelta(days=183)):
i = -1
else:
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
for url in urls:
try:
article = {}
if "https://www.gov.cn" in url:
req = urllib.request.urlopen(url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
article['originalContent'] = encode(page.xpath("//div[contains(@id, 'UCAP-CONTENT')]//p"))
content_eng = ''
for element in article['originalContent'].split("。"):
content_eng += translator.translate(element, dest='en').text + ' '
article['content'] = content_eng
article['site'] = "State Council"
article['originalSite'] = "国务院"
article['originalTitle'] = page.xpath("//title/text()")[0]
article['title'] = translator.translate(article['originalTitle'], dest='en').text
article['url'] = url
article['category']= "Policy Release"
article['publishDate'] = datemodifier_gov(page.xpath("//meta[@name = 'firstpublishedtime']/@content")[0])
elif "/zcfb/tz/" in url:
url = url.replace("../../zcfb/tz/", "https://www.ndrc.gov.cn/xxgk/zcfb/tz/")
req = urllib.request.urlopen(url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
content_eng = ''
for element in article['originalContent'].split("。"):
content_eng += translator.translate(element, dest='en').text + ' '
article['content'] = content_eng
article['site'] = "National Development and Reform Commission"
article['originalSite'] = "国家发展和改革委员会"
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
article['title'] = translator.translate(article['originalTitle'], dest='en').text
article['url'] = url
article['category']= "Policy Release"
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
else:
url = url.replace("../../", "https://www.ndrc.gov.cn/xxgk/jd/jd/")
url = url.replace("./", "https://www.ndrc.gov.cn/xxgk/jd/jd/")
req = urllib.request.urlopen(url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
content_eng = ''
for element in article['originalContent'].split("。"):
content_eng += translator.translate(element, dest='en').text + ' '
article['content'] = content_eng
article['site'] = "National Development and Reform Commission"
article['originalSite'] = "国家发展和改革委员会"
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
article['title'] = translator.translate(article['originalTitle'], dest='en').text
article['url'] = url
article['category']= "Policy Interpretation"
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
label_dict = {
"positive": "+",
"negative": "-",
"neutral": "0",
}
sentiment_score = 0
maximum_value = 0
raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
sentiment_label = None
for sentiment_dict in raw_sentiment[0]:
value = sentiment_dict["score"]
if value > maximum_value:
sentiment_label = sentiment_dict["label"]
maximum_value = value
if sentiment_dict["label"] == "positive":
sentiment_score = sentiment_score + value
if sentiment_dict["label"] == "negative":
sentiment_score = sentiment_score - value
else:
sentiment_score = sentiment_score + 0
article['sentimentScore'] = sentiment_score
article['sentimentLabel'] = label_dict[sentiment_label]
upsert_content(article)
except Exception as error:
print(error)