OxbridgeEconomics
commit
57c4050
raw
history blame
9.7 kB
import uuid
import time
import urllib.request
from lxml import etree
from datetime import datetime, timedelta
from utils import encode, translate, datemodifier, sentiment_computation, upsert_content
i = 0
while i > -1:
if i == 0:
CATEGORY_URL = "https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/"
else:
CATEGORY_URL = f"https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/index_{i}.htm"
i = i + 1
req = urllib.request.urlopen(CATEGORY_URL)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
for article in articlelist:
if isinstance(article, etree._Element):
subelement = etree.tostring(article).decode()
subpage = etree.HTML(subelement)
date = subpage.xpath("//span/text()")[0]
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
if parsed_datetime < (datetime.today() - timedelta(days=183)):
i = -1
else:
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
for url in urls:
try:
article = {}
url = url.replace("../", "https://www.mof.gov.cn/zhengwuxinxi/")
url = url.replace("./", "https://www.mof.gov.cn/zhengwuxinxi/caizhengxinwen/")
req = urllib.request.urlopen(url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
if len(article['originalContent']) < 10:
continue
CONTENT_ENG = ''
for element in article['originalContent'].split("。"):
CONTENT_ENG += translate(element) + ' '
article['content'] = CONTENT_ENG
article['site'] = "Ministry of Finance"
article['originalSite'] = "财政部"
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
article['title'] = translate(article['originalTitle'])
article['url'] = url
article['category']= "Financial News"
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0],"%Y-%m-%d %H:%M:%S")
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
article['sentimentScore'], article['sentimentLabel'] = sentiment_computation(article['content'])
upsert_content(article)
except Exception as error:
print(error)
i = 0
while i > -1:
if i == 0:
CATEGORY_URL = "https://www.mof.gov.cn/zhengwuxinxi/zhengcejiedu/"
else:
CATEGORY_URL = f"https://www.mof.gov.cn/zhengwuxinxi/zhengcejiedu/index_{i}.htm"
i = i + 1
req = urllib.request.urlopen(CATEGORY_URL)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
for article in articlelist:
if isinstance(article, etree._Element):
subelement = etree.tostring(article).decode()
subpage = etree.HTML(subelement)
date = subpage.xpath("//span/text()")[0]
parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
if parsed_datetime < (datetime.today() - timedelta(days=183)):
i = -1
else:
urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
for url in urls:
try:
article = {}
url = url.replace("./", CATEGORY_URL)
req = urllib.request.urlopen(url)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
if len(article['originalContent']) < 10:
continue
CONTENT_ENG = ''
for element in article['originalContent'].split("。"):
CONTENT_ENG += translate(element) + ' '
article['content'] = CONTENT_ENG
article['site'] = "Ministry of Finance"
article['originalSite'] = "财政部"
article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
article['title'] = translate(article['originalTitle'])
article['url'] = url
article['category']= "Policy Interpretation"
article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0], "%Y-%m-%d %H:%M:%S")
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
article['sentimentScore'], article['sentimentLabel'] = sentiment_computation(article['content'])
upsert_content(article)
except Exception as error:
print(error)
# categoryu_urls = ["https://www.mof.gov.cn/zhengwuxinxi/zhengcefabu/"]
# for categoryu_url in categoryu_urls:
# req = urllib.request.urlopen(categoryu_url)
# text = req.read()
# html_text = text.decode("utf-8")
# page = etree.HTML(html_text)
# articlelist = page.xpath("//div[contains(@class, 'xwfb_listerji')]/ul/li[not(@class = 'clear')]")
# for article in articlelist:
# if isinstance(article, etree._Element):
# subelement = etree.tostring(article).decode()
# subpage = etree.HTML(subelement)
# date = subpage.xpath("//span/text()")[0]
# parsed_datetime = datetime.strptime(time.strftime("%Y-%m-%d", time.strptime(date,"%Y-%m-%d")), "%Y-%m-%d")
# if parsed_datetime > (datetime.today() - timedelta(days=183)):
# urls = subpage.xpath("//a[contains(@target, '_blank')]/@href")
# for url in urls:
# try:
# article = {}
# url = url.replace("./", categoryu_url)
# req = urllib.request.urlopen(url)
# text = req.read()
# html_text = text.decode("utf-8")
# page = etree.HTML(html_text)
# article['originalContent'] = encode(page.xpath("//div[contains(@class, 'TRS_Editor')]//p"))
# content_eng = ''
# for element in article['originalContent'].split("。"):
# content_eng += translator.translate(element, dest='en').text + ' '
# article['content'] = content_eng
# article['site'] = "Ministry of Finance"
# article['originalSite'] = "财政部"
# article['originalTitle'] = page.xpath("//meta[@name = 'ArticleTitle']/@content")[0]
# article['title'] = translator.translate(article['originalTitle'], dest='en').text
# article['url'] = url
# article['category']= "Policy Release"
# article['publishDate'] = datemodifier(page.xpath("//meta[@name = 'PubDate']/@content")[0])
# article['id'] = uuid.uuid5(uuid.NAMESPACE_OID, article['title']+article['publishDate'])
# label_dict = {
# "positive": "+",
# "negative": "-",
# "neutral": "0",
# }
# sentiment_score = 0
# maximum_value = 0
# raw_sentiment = analyzer(article['content'][:512], return_all_scores=True)
# sentiment_label = None
# for sentiment_dict in raw_sentiment[0]:
# value = sentiment_dict["score"]
# if value > maximum_value:
# sentiment_label = sentiment_dict["label"]
# maximum_value = value
# if sentiment_dict["label"] == "positive":
# sentiment_score = sentiment_score + value
# if sentiment_dict["label"] == "negative":
# sentiment_score = sentiment_score - value
# else:
# sentiment_score = sentiment_score + 0
# article['sentimentScore'] = sentiment_score
# article['sentimentLabel'] = label_dict[sentiment_label]
# upsert_content(article)
# except Exception as error:
# print(error)