File size: 26,862 Bytes
74475ac c664824 48adbee 74475ac 693e166 74475ac 964df08 5fea365 964df08 74475ac fbf8f15 74475ac 693e166 74475ac c39d841 74475ac 693e166 74475ac d705151 74475ac 693e166 74475ac c39d841 74475ac 497072d 74475ac 497072d 964df08 74475ac 693e166 74475ac dcdb6e8 74475ac 2512706 74475ac 93058c6 74475ac 693e166 2512706 74475ac 693e166 74475ac 693e166 3c227dd 74475ac 693e166 74475ac 3c227dd 74475ac 0e15728 74475ac 693e166 74475ac 693e166 74475ac 693e166 74475ac 693e166 beed350 d705151 74475ac 693e166 74475ac f237a77 32cebdb 93058c6 32cebdb 93058c6 32cebdb 93058c6 32cebdb 93058c6 32cebdb 93058c6 32cebdb 93058c6 32cebdb 93058c6 74475ac 693e166 74475ac d705151 74475ac 693e166 74475ac 8467896 270ad28 693e166 74475ac 693e166 74475ac 693e166 74475ac 270ad28 693e166 c39d841 74475ac 01677a0 74475ac 693e166 74475ac a13f43a 74475ac 29d3eca 74475ac c9d52fa 29d3eca 48adbee c9d52fa 74475ac 5737030 d705151 5737030 74475ac b68d569 93058c6 b68d569 74475ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
"""Module to define utility function"""
import glob
import json
import logging
import os
import re
import time
import urllib.request
import uuid
from datetime import datetime, timedelta
from decimal import Decimal
from urllib.parse import urlparse
import boto3
import pandas as pd
import requests
from dotenv import load_dotenv
from deep_translator import GoogleTranslator, exceptions
from langdetect import detect, lang_detect_exception
from lxml import etree
import PyPDF2
from transformers import pipeline
from controllers.summarizer import summarize
from controllers.vectorizer import vectorize
load_dotenv()
AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY']
analyzer = pipeline("sentiment-analysis", model="ProsusAI/finbert")
with open('xpath.json', 'r', encoding='UTF-8') as f:
xpath_dict = json.load(f)
with open('patterns.json', 'r', encoding='UTF-8') as f:
patterns = json.load(f)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s',
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO
)
def datemodifier(date_string, date_format):
"""Date Modifier Function
This function takes a date string and a date format as input and modifies the date string
according to the specified format. It returns modified date string in the format 'YYYY-MM-DD'.
Args:
date_string (str): The date string to be modified.
date_format (str): The format of the date string.
Returns:
str: The modified date string in the format 'YYYY-MM-DD'.
False: If an error occurs during the modification process.
"""
try:
to_date = time.strptime(date_string, date_format)
return time.strftime("%Y-%m-%d", to_date)
except (ValueError, KeyError, TypeError) as error:
logging.error("ValueError: %s", error)
return False
def encode(content):
"""
Encodes the given content into a single string.
Args:
content (list): A list of elements to be encoded.
Each element can be either a string or an `etree._Element` object.
Returns:
str: The encoded content as a single string.
"""
text = ''
for element in content:
if isinstance(element, etree._Element):
subelement = etree.tostring(element).decode()
subpage = etree.HTML(subelement)
tree = subpage.xpath('//text()')
line = ''.join(translist(tree)).\
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
else:
line = element
text += line
return text
def encode_content(content):
"""
Encodes the content by removing unnecessary characters and extracting a summary.
Args:
content (list): A list of elements representing the content.
Returns:
tuple: A tuple containing the encoded text and the summary.
"""
text = ''
index = -1
for element in content:
if isinstance(element, etree._Element):
subelement = etree.tostring(element).decode()
subpage = etree.HTML(subelement)
tree = subpage.xpath('//text()')
line = ''.join(translist(tree)).\
replace('\n','').replace('\t','').replace('\r','').replace(' ','').strip()
else:
line = element
if line != '':
line = line + '\n'
text += line
index = text.find('打印本页')
if index != -1:
text = text[:index]
try:
summary = '\n'.join(text.split('\n')[:2])
except (IndexError, AttributeError) as e:
logging.error(e)
summary = text
return text, summary
def fetch_url(url):
"""
Fetches the content of a given URL.
Args:
url (str): The URL to fetch.
Returns:
str or None: The content of the URL if the request is successful (status code 200),
otherwise None.
Raises:
requests.exceptions.RequestException:
If there is an error while making the request or if the response status code is not 200.
"""
try:
response = requests.get(url, timeout=60)
if response.status_code == 200:
return response.text
else:
return None
except (requests.exceptions.RequestException, requests.exceptions.ReadTimeout) as e:
logging.error(e) # Optional: handle or log the error in some way
return None
def translate(text, max_length=4950):
"""
Translates the given text to English.
Args:
text (str): The text to be translated.
Returns:
str: The translated text in English.
"""
if not text:
return ""
if len(text) <= max_length:
for _ in range(5):
try:
return GoogleTranslator(source='auto', target='en').translate(text) or ""
except exceptions.RequestError:
time.sleep(1)
return ""
# If text is too long, split and translate in chunks
result = []
for i in range(0, len(text), max_length):
chunk = text[i:i+max_length]
for _ in range(5):
try:
result.append(GoogleTranslator(source='auto', target='en').translate(chunk) or "")
break
except exceptions.RequestError:
time.sleep(1)
else:
result.append("") # If all retries fail, append empty string
return " ".join(result)
def sentiment_computation(content):
"""
Compute the sentiment score and label for the given content.
Parameters:
content (str): The content for which sentiment needs to be computed.
Returns:
tuple: A tuple containing the sentiment score and label.
The sentiment score is a float representing the overall sentiment score of the content.
The sentiment label is a string representing the sentiment label ('+', '-', or '0').
"""
label_dict = {
"positive": "+",
"negative": "-",
"neutral": "0",
}
sentiment_score = 0
maximum_value = 0
raw_sentiment = analyzer(content[:500], top_k=None)
sentiment_label = None
for sentiment_dict in raw_sentiment:
value = sentiment_dict["score"]
if value > maximum_value:
sentiment_label = sentiment_dict["label"]
maximum_value = value
if sentiment_dict["label"] == "positive":
sentiment_score = sentiment_score + value
if sentiment_dict["label"] == "negative":
sentiment_score = sentiment_score - value
else:
sentiment_score = sentiment_score + 0
sentiment_score = sentiment_score * 100
return sentiment_score, label_dict[sentiment_label]
def get_client_connection():
"""
Returns a client connection to DynamoDB.
:return: DynamoDB client connection
"""
dynamodb = boto3.client(service_name='dynamodb',
region_name='us-east-1',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
return dynamodb
def update_content(report):
"""
Updates the content of an article in the 'Article_China' table in DynamoDB.
Args:
report (dict): A dictionary containing the report data.
Returns:
None
"""
logging.info("Updating content for %s", report['id'])
dynamodb = get_client_connection()
dynamodb.update_item(
TableName="Article_China",
Key={
'id': {
'S': str(report['id'])
}
# 'site': {
# 'S': report['site']
# }
},
UpdateExpression=
'SET title = :title, site = :site, titleCN = :titleCN, contentCN = :contentCN, \
category = :category, author = :author, content = :content, subtitle = :subtitle, \
publishDate = :publishDate, link = :link, attachment = :attachment, \
sentimentScore = :sentimentScore, sentimentLabel = :sentimentLabel, \
LastModifiedDate = :LastModifiedDate, entityList = :entityList',
ExpressionAttributeValues={
':title': {
'S': report['title']
},
':site': {
'S': report['site']
},
':titleCN': {
'S': report['titleCN']
},
':contentCN': {
'S': report['contentCN']
},
':category': {
'S': report['category']
},
':author': {
'S': report['author']
},
':content': {
'S': report['content']
},
':subtitle': {
'S': report['subtitle']
},
':publishDate': {
'S': report['publishDate']
},
':link': {
'S': report['link']
},
':attachment': {
'S': report['attachment']
},
':LastModifiedDate': {
'S': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
},
':sentimentScore': {
'N':
str(
Decimal(str(report['sentimentScore'])).quantize(
Decimal('0.01')))
},
':sentimentLabel': {
'S': report['sentimentLabel']
},
':entityList': {
'L': []
}
})
def update_reference(report):
"""
Updates the reference in the 'reference_china' table in DynamoDB.
Args:
report (dict): A dictionary containing the report details.
Returns:
None
"""
dynamodb = get_client_connection()
response = dynamodb.update_item(
TableName="reference_china",
Key={
'id': {
'S': str(report['refID'])
},
'sourceID': {
'S': str(report['sourceID'])
}
},
UpdateExpression=
'SET link = :link, referenceID = :referenceID, LastModifiedDate = :LastModifiedDate',
ExpressionAttributeValues={
':link': {
'S': report['link']
},
':referenceID': {
'S': report['referenceID']
},
':LastModifiedDate': {
'S': datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
},
})
logging.info(response)
def download_files_from_s3(folder):
"""
Downloads Parquet files from an S3 bucket and returns a concatenated DataFrame.
Args:
folder (str): The folder in the S3 bucket to download files from.
Returns:
pandas.DataFrame: A concatenated DataFrame containing data from downloaded Parquet files.
"""
if not os.path.exists(folder):
os.makedirs(folder)
client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
)
response = client.list_objects_v2(Bucket='china-securities-report',
Prefix=f"{folder}/")
for obj in response['Contents']:
key = obj['Key']
if key.endswith('.parquet'):
client.download_file('china-securities-report', key, key)
file_paths = glob.glob(os.path.join(folder, '*.parquet'))
return pd.concat([pd.read_parquet(file_path) for file_path in file_paths],
ignore_index=True)
def extract_from_pdf_by_pattern(url, pattern):
"""
Extracts text from a PDF file based on a given pattern.
Args:
url (str): The URL of the PDF file to extract text from.
pattern (dict): A dictionary containing pattern to match and the pages to extract text from.
Returns:
str: The extracted text from the PDF file.
Raises:
Exception: If there is an error while retrieving or processing the PDF file.
"""
# Send a GET request to the URL and retrieve the PDF content
try:
response = requests.get(url, timeout=60)
pdf_content = response.content
# Save the PDF content to a local file
with open("downloaded_file.pdf", "wb") as file:
file.write(pdf_content)
# Open the downloaded PDF file and extract the text
with open("downloaded_file.pdf", "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
extracted_text = ""
if 'pages' in pattern:
pages = pattern['pages']
else:
pages = len(pdf_reader.pages)
for page in pages:
text = pdf_reader.pages[page].extract_text()
if 'keyword' in pattern and pattern['keyword'] in text:
text = text.split(pattern['keyword'], 1)[1].strip()
else:
text = text.strip()
extracted_text += text
except (requests.exceptions.RequestException, requests.exceptions.ReadTimeout,
PyPDF2.errors.PdfReadError, PyPDF2.errors.DependencyError) as e:
logging.error(e)
extracted_text = ''
return extracted_text.replace('?\n', '?-\n').replace(
'!\n', '!-\n').replace('。\n', '。-\n').replace('\n', ' ').replace(
'?-', '?\n').replace('!-', '!\n').replace('。-', '。\n')
def get_reference_by_regex(pattern, text):
"""
Finds all occurrences of a given regex pattern in the provided text.
Args:
pattern (str): The regex pattern to search for.
text (str): The text to search within.
Returns:
list: A list of all matches found in the text.
"""
return re.findall(pattern, text)
def isnot_substring(list_a, string_to_check):
"""
Check if any string in the given list is a substring of the string_to_check.
Args:
list_a (list): A list of strings to check.
string_to_check (str): The string to check for substrings.
Returns:
bool: True if none of strings in list_a are substrings of string_to_check, False otherwise.
"""
return all(s not in string_to_check for s in list_a)
def extract_reference(row):
"""
Extracts reference information from a given row.
Args:
row (dict): A dictionary representing a row of data.
Returns:
None
"""
try:
print("Extracting reference for %s", row['id'])
# Get the pattern for the given site. If not found, skip extraction.
pattern = next((elem for elem in patterns if elem['site'] == row['site']), None)
if pattern is None:
logging.warning("No reference pattern found for site %s. Skipping reference extraction.", row['site'])
return []
# Extract text from PDF. If extraction fails, return an empty list.
extracted_text = extract_from_pdf_by_pattern(row.get('attachment', ''), pattern)
if not extracted_text:
logging.warning("PDF extraction returned empty text for record %s.", row['id'])
return []
# Now safely attempt to extract reference titles and dates.
reference_titles = re.findall(pattern.get('article_regex', ''), extracted_text) or []
reference_dates = re.findall(pattern.get('date_regex', ''), extracted_text) or []
# Proceed only if reference_titles and reference_dates are non-empty.
if not reference_titles or not reference_dates:
logging.info("No reference titles or dates found for record %s.", row['id'])
return []
reference_titles = [s.replace(' ', '') for s in reference_titles]
reference_dates = [s.replace(' ', '') for s in reference_dates]
if 'remove' in pattern:
for remove_string in pattern['remove']:
reference_titles = [
s.replace(remove_string, '') for s in reference_titles
]
if len(reference_dates) > 0:
reference_ids = []
for title, date in zip(reference_titles, reference_dates):
try:
date = datetime.strptime(date, pattern['date_format'])
except ValueError:
date = datetime(2006, 1, 1)
dates = []
if 'date_range' in pattern:
for i in range(pattern['date_range'] + 1):
dates.append(
(date + timedelta(days=i)).strftime('%Y-%m-%d'))
dates.append(
(date - timedelta(days=i)).strftime('%Y-%m-%d'))
dates.append(date.strftime('%Y-%m-%d'))
date = date.strftime('%Y-%m-%d')
if 'split' in pattern:
for split_item in pattern['split']:
if 'exceptional_string' in split_item:
if split_item[
'string'] in title and isnot_substring(
split_item['exceptional_string'],
title):
title = re.split(split_item['string'],
title)[split_item['index']]
else:
if split_item['string'] in title:
title = title.split(
split_item['string'])[split_item['index']]
if len(data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site']) &
(data['publishdate'].isin(dates))]) == 0:
logging.info("------------ = 0 ------------")
logging.info("%s - %s", date, repr(title))
elif len(data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site']) &
(data['publishdate'].isin(dates))]) > 1:
logging.info("------------ > 1 ------------")
logging.info("%s - %s", date, repr(title))
else:
logging.info("------------ = 1 ------------")
reference_df = data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site']) &
(data['publishdate'].isin(dates))]
row['referenceID'] = reference_df.iloc[0]['id']
reference_ids.append(row['referenceID'])
row['link'] = reference_df.iloc[0]['link']
row['sourceID'] = row['id']
row['refID'] = uuid.uuid5(
uuid.NAMESPACE_OID,
str(row['sourceID']) + str(row['referenceID']))
logging.info("%s - %s - %s - %s",
date, repr(title), row['sourceID'], row['referenceID'])
update_reference(row)
return reference_ids
else:
reference_ids = []
for title in reference_titles:
if 'split' in pattern:
for split_item in pattern['split']:
if 'exceptional_string' in split_item:
if split_item[
'string'] in title and isnot_substring(
split_item['exceptional_string'],
title):
title = re.split(split_item['string'],
title)[split_item['index']]
else:
if split_item['string'] in title:
title = title.split(
split_item['string'])[split_item['index']]
if len(data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site'])]) == 0:
logging.info("------------ = 0 ------------")
logging.info(repr(title))
elif len(data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site'])]) > 1:
logging.info("------------ > 1 ------------")
logging.info(repr(title))
else:
logging.info("------------ = 1 ------------")
reference_df = data[(data['titleCN'].str.contains(title))
& (data['site'] == row['site'])]
row['referenceID'] = reference_df.iloc[0]['id']
reference_ids.append(row['referenceID'])
row['link'] = reference_df.iloc[0]['link']
row['sourceID'] = row['id']
row['refID'] = uuid.uuid5(
uuid.NAMESPACE_OID,
str(row['sourceID']) + str(row['referenceID']))
logging.info("%s - %s - %s", repr(title), row['sourceID'],
row['referenceID'])
update_reference(row)
return reference_ids
except (ValueError, KeyError, TypeError) as error:
logging.error(error)
return None
def translist(infolist):
"""
Filter and transform a list of strings.
Args:
infolist (list): The input list of strings.
Returns:
list: The filtered and transformed list of strings.
"""
out = list(
filter(lambda s: s and (isinstance(s, str) or len(s.strip()) > 0),
[i.strip() for i in infolist]))
return out
def extract_from_pdf(url):
"""
Extracts text from a PDF file given its URL.
Args:
url (str): The URL of the PDF file.
Returns:
tuple: A tuple containing the extracted text and a summary of the text.
Raises:
Exception: If there is an error during the extraction process.
"""
# Send a GET request to the URL and retrieve the PDF content
response = requests.get(url, timeout=60)
pdf_content = response.content
# Save the PDF content to a local file
with open("downloaded_file.pdf", "wb") as file:
file.write(pdf_content)
# Open the downloaded PDF file and extract the text
extracted_text = ""
try:
with open("downloaded_file.pdf", "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
num_pages = len(pdf_reader.pages)
for page in range(num_pages):
text = pdf_reader.pages[page].extract_text()
if text and text[0].isdigit():
text = text[1:]
# first_newline_index = text.find('。\n')
text = text.replace('?\n', '?-\n').replace('!\n', '!-\n').replace(
'。\n', '。-\n').replace('\n', '').replace('?-', '?\n').replace(
'!-', '!\n').replace('。-', '。\n')
if text != '':
extracted_text += text
summary = '\n'.join(extracted_text.split('\n')[:2])
except (ValueError, KeyError, TypeError, PyPDF2.errors.PdfReadError) as e:
logging.error(e)
summary = extracted_text
return extracted_text, summary
def get_db_connection():
"""Get dynamoDB connection.
Returns:
boto3.resource: The DynamoDB resource object representing the connection.
"""
dynamodb = boto3.resource(service_name='dynamodb',
region_name='us-east-1',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
return dynamodb
def crawl_by_url(url, article):
"""
Crawls the given URL and extracts relevant information from the webpage.
Args:
url (str): The URL of the webpage to crawl.
article (dict): A dictionary to store the extracted information.
Returns:
None: If the length of the extracted content is less than 10 characters.
Raises:
None
"""
domain = '.'.join(urlparse(url).netloc.split('.')[1:])
headers = {'User-Agent':
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
req = urllib.request.Request(url, headers=headers)
req = urllib.request.urlopen(req, timeout=60)
text = req.read()
html_text = text.decode("utf-8")
page = etree.HTML(html_text)
contentcn, summary = encode_content(
page.xpath(xpath_dict[domain]['content']))
if contentcn is None or len(contentcn) < 10:
return
article['originSite'] = xpath_dict[domain]['siteCN']
article['site'] = xpath_dict[domain]['site']
article['titleCN'] = encode(page.xpath(xpath_dict[domain]['title']))
article['title'] = translate(article['titleCN'])
if 'author' in xpath_dict[domain]:
article['author'] = translate(
encode(page.xpath(xpath_dict[domain]['author'])))
else:
article['author'] = ""
article['contentCN'] = repr(contentcn)[1:-1].strip()
if len(article['contentCN']) < 10:
return None
contenteng = ''
for element in contentcn.split("\n"):
contenteng += translate(element) + '\n'
try:
if detect(contenteng) != 'en':
for element in contentcn.split("。"):
contenteng += translate(element) + '. '
except (requests.exceptions.RequestException, requests.exceptions.ReadTimeout,
PyPDF2.errors.PdfReadError, PyPDF2.errors.DependencyError,
lang_detect_exception.LangDetectException) as e:
print(f"An unexpected error occurred: {e}")
article['content'] = repr(contenteng)[1:-1].strip()
try:
article['subtitle'] = summarize(article['content'])
except (ValueError, KeyError, TypeError):
article['subtitle'] = translate(summary)
article['publishDate'] = datemodifier(
encode(page.xpath(xpath_dict[domain]['publishdate'])),
xpath_dict[domain]['datetime_format'])
article['link'] = url
article['attachment'] = ""
article['sentimentScore'], article[
'sentimentLabel'] = sentiment_computation(contenteng.replace(
"\n", ""))
article['id'] = uuid.uuid5(uuid.NAMESPACE_OID,
article['titleCN'] + article['publishDate'])
logging.info("%s - %s", article['id'], article['site'])
article['referenceid'] = None
update_content(article)
vectorize(article)
data = download_files_from_s3('data')
|