Spaces:
Sleeping
Sleeping
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
from typing import Optional, Union | |
logger = logging.get_logger(__name__) | |
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class DeepseekV3Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the DeepSeek-V3. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Copy from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/configuration_deepseek.py | |
Args: | |
vocab_size (`int`, *optional*, defaults to 129280): | |
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`DeepseekV3Model`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
moe_intermediate_size (`int`, *optional*, defaults to 1407): | |
Dimension of the MoE representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer decoder. | |
num_nextn_predict_layers (`int`, *optional*, defaults to 1): | |
Number of nextn predict layers in the DeepSeekV3 Model. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
n_shared_experts (`int`, *optional*, defaults to None): | |
Number of shared experts, None means dense model. | |
n_routed_experts (`int`, *optional*, defaults to None): | |
Number of routed experts, None means dense model. | |
routed_scaling_factor (`float`, *optional*, defaults to 1.0): | |
Scaling factor or routed experts. | |
topk_method (`str`, *optional*, defaults to `gready`): | |
Topk method used in routed gate. | |
n_group (`int`, *optional*, defaults to None): | |
Number of groups for routed experts. | |
topk_group (`int`, *optional*, defaults to None): | |
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). | |
num_experts_per_tok (`int`, *optional*, defaults to None): | |
Number of selected experts, None means dense model. | |
moe_layer_freq (`int`, *optional*, defaults to 1): | |
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. | |
first_k_dense_replace (`int`, *optional*, defaults to 0): | |
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). | |
\--k dense layers--/ | |
norm_topk_prob (`bool`, *optional*, defaults to False): | |
Whether to normalize the weights of the routed experts. | |
scoring_func (`str`, *optional*, defaults to 'softmax'): | |
Method of computing expert weights. | |
aux_loss_alpha (`float`, *optional*, defaults to 0.001): | |
Auxiliary loss weight coefficient. | |
seq_aux = (`bool`, *optional*, defaults to True): | |
Whether to compute the auxiliary loss for each individual sample. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
End of stream token id. | |
pretraining_tp (`int`, *optional*, defaults to 1): | |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | |
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | |
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | |
issue](https://github.com/pytorch/pytorch/issues/76232). | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | |
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | |
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | |
`max_position_embeddings` to the expected new maximum. | |
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | |
Whether to use a bias in the query, key, value and output projection layers during self-attention. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
```python | |
>>> from transformers import DeepseekV3Model, DeepseekV3Config | |
>>> # Initializing a Deepseek-V3 style configuration | |
>>> configuration = DeepseekV3Config() | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "deepseek_v3" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=129280, | |
hidden_size=7168, | |
intermediate_size=18432, | |
moe_intermediate_size=2048, | |
num_hidden_layers=61, | |
num_nextn_predict_layers=1, | |
num_attention_heads=128, | |
num_key_value_heads=128, | |
n_shared_experts=1, | |
n_routed_experts=256, | |
ep_size=1, | |
routed_scaling_factor=2.5, | |
kv_lora_rank=512, | |
q_lora_rank=1536, | |
qk_rope_head_dim=64, | |
v_head_dim=128, | |
qk_nope_head_dim=128, | |
topk_method="noaux_tc", | |
n_group=8, | |
topk_group=4, | |
num_experts_per_tok=8, | |
moe_layer_freq=1, | |
first_k_dense_replace=3, | |
norm_topk_prob=True, | |
scoring_func="sigmoid", | |
aux_loss_alpha=0.001, | |
seq_aux=True, | |
hidden_act="silu", | |
max_position_embeddings=4096, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=0, | |
eos_token_id=1, | |
pretraining_tp=1, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
attention_bias=False, | |
attention_dropout=0.0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.moe_intermediate_size = moe_intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_nextn_predict_layers = num_nextn_predict_layers | |
self.num_attention_heads = num_attention_heads | |
self.n_shared_experts = n_shared_experts | |
self.n_routed_experts = n_routed_experts | |
self.ep_size = ep_size | |
self.routed_scaling_factor = routed_scaling_factor | |
self.kv_lora_rank = kv_lora_rank | |
self.q_lora_rank = q_lora_rank | |
self.qk_rope_head_dim = qk_rope_head_dim | |
self.v_head_dim = v_head_dim | |
self.qk_nope_head_dim = qk_nope_head_dim | |
self.topk_method = topk_method | |
self.n_group = n_group | |
self.topk_group = topk_group | |
self.num_experts_per_tok = num_experts_per_tok | |
self.moe_layer_freq = moe_layer_freq | |
self.first_k_dense_replace = first_k_dense_replace | |
self.norm_topk_prob = norm_topk_prob | |
self.scoring_func = scoring_func | |
self.aux_loss_alpha = aux_loss_alpha | |
self.seq_aux = seq_aux | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.pretraining_tp = pretraining_tp | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.attention_bias = attention_bias | |
self.attention_dropout = attention_dropout | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
class MoonViTConfig(PretrainedConfig): | |
model_type = "moonvit" | |
def __init__( | |
self, | |
patch_size: int = 14, | |
init_pos_emb_height: int = 64, | |
init_pos_emb_width: int = 64, | |
num_attention_heads: int = 16, | |
num_hidden_layers: int = 27, | |
hidden_size: int = 1152, | |
intermediate_size: int = 4304, | |
merge_kernel_size: tuple[int, int] = (2, 2), | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.patch_size = patch_size | |
# Positional embedding config | |
self.init_pos_emb_height = init_pos_emb_height | |
self.init_pos_emb_width = init_pos_emb_width | |
# Transformer config | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
# Patch merger config | |
self.merge_kernel_size = merge_kernel_size | |
class KimiVLConfig(PretrainedConfig): | |
model_type = "kimi_vl" | |
def __init__( | |
self, | |
vision_config: Optional[Union[dict, MoonViTConfig]] = None, | |
text_config: Optional[Union[dict, DeepseekV3Config]] = None, | |
ignore_index: int = -100, | |
media_placeholder_token_id: int = 163605, | |
pad_token_id: int = 0, | |
**kwargs, | |
): | |
if vision_config is None: | |
vision_config = MoonViTConfig() | |
elif isinstance(vision_config, dict): | |
vision_config = MoonViTConfig(**vision_config) | |
self.vision_config = vision_config | |
if text_config is None: | |
text_config = DeepseekV3Config() | |
elif isinstance(text_config, dict): | |
text_config = DeepseekV3Config(**text_config) | |
self.text_config = text_config | |
self.ignore_index = ignore_index | |
self.media_placeholder_token_id = media_placeholder_token_id | |
attn_implementation = kwargs.get("attn_implementation") | |
if attn_implementation is not None: | |
if attn_implementation in ["eager", "flash_attention_2"]: | |
self._attn_implementation = attn_implementation | |
self.vision_config._attn_implementation = attn_implementation | |
self.text_config._attn_implementation = attn_implementation | |
else: | |
raise ValueError( | |
f"Invalid attention implementation: {attn_implementation}" | |
) | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |