heymenn commited on
Commit
7da1f26
·
verified ·
1 Parent(s): 96ed966

Update kig_core/prompts.py

Browse files
Files changed (1) hide show
  1. kig_core/prompts.py +4 -11
kig_core/prompts.py CHANGED
@@ -84,14 +84,10 @@ SUMMARIZER_PROMPT = ChatPromptTemplate.from_template(SUMMARIZER_TEMPLATE)
84
  # This prompt guides the LLM to output structured Key Issues based on gathered context.
85
  # It references the Pydantic model 'KeyIssue' for the desired format.
86
  KEY_ISSUE_STRUCTURING_TEMPLATE = f"""Based on the provided context (summaries of relevant documents, research findings, etc.), identify and formulate distinct Key Issues related to the original user query.
87
-
88
  User Query: {{user_query}}
89
-
90
  Context:
91
  {{context}}
92
-
93
  For each Key Issue identified, provide the following information in the exact JSON format described below. Output a JSON list containing multiple KeyIssue objects.
94
-
95
  JSON Schema for each Key Issue object:
96
  {{
97
  "id": "Sequential integer ID starting from 1",
@@ -100,30 +96,27 @@ JSON Schema for each Key Issue object:
100
  "challenges": ["List of specific challenges related to this issue (strings)", "Each challenge as a separate string"],
101
  "potential_impact": "Brief description of the potential impact if not addressed (optional, max 30 words)"
102
  }}
103
-
104
  Example Format:
105
  [
106
- {{
107
  "id": 1,
108
  "title": "Scalability of AI Models in Low-Resource Settings",
109
  "description": "Deploying complex AI models for healthcare diagnostics in areas with limited computational power and data connectivity presents significant scalability challenges. Existing models often require substantial resources.",
110
  "challenges": ["High computational requirements of current models", "Intermittent or low-bandwidth network connectivity", "Lack of large, localized datasets for training/fine-tuning"],
111
  "potential_impact": "Limits equitable access to advanced AI-driven healthcare diagnostics."
112
- }},
113
- {{
114
  "id": 2,
115
  "title": "...",
116
  "description": "...",
117
  "challenges": ["...", "..."],
118
  "potential_impact": "..."
119
- }}
120
  ]
121
-
122
  Generate the JSON list of Key Issues based *only* on the provided context and user query. Ensure the output is a valid JSON list.
123
  """
124
  KEY_ISSUE_STRUCTURING_PROMPT = ChatPromptTemplate.from_template(KEY_ISSUE_STRUCTURING_TEMPLATE)
125
 
126
-
127
  # --- Initial Prompt Selection ---
128
  def get_initial_planner_prompt(plan_method: str, user_query: str) -> ChatPromptTemplate:
129
  if plan_method == "generation":
 
84
  # This prompt guides the LLM to output structured Key Issues based on gathered context.
85
  # It references the Pydantic model 'KeyIssue' for the desired format.
86
  KEY_ISSUE_STRUCTURING_TEMPLATE = f"""Based on the provided context (summaries of relevant documents, research findings, etc.), identify and formulate distinct Key Issues related to the original user query.
 
87
  User Query: {{user_query}}
 
88
  Context:
89
  {{context}}
 
90
  For each Key Issue identified, provide the following information in the exact JSON format described below. Output a JSON list containing multiple KeyIssue objects.
 
91
  JSON Schema for each Key Issue object:
92
  {{
93
  "id": "Sequential integer ID starting from 1",
 
96
  "challenges": ["List of specific challenges related to this issue (strings)", "Each challenge as a separate string"],
97
  "potential_impact": "Brief description of the potential impact if not addressed (optional, max 30 words)"
98
  }}
 
99
  Example Format:
100
  [
101
+ {{{{
102
  "id": 1,
103
  "title": "Scalability of AI Models in Low-Resource Settings",
104
  "description": "Deploying complex AI models for healthcare diagnostics in areas with limited computational power and data connectivity presents significant scalability challenges. Existing models often require substantial resources.",
105
  "challenges": ["High computational requirements of current models", "Intermittent or low-bandwidth network connectivity", "Lack of large, localized datasets for training/fine-tuning"],
106
  "potential_impact": "Limits equitable access to advanced AI-driven healthcare diagnostics."
107
+ }}}},
108
+ {{{{
109
  "id": 2,
110
  "title": "...",
111
  "description": "...",
112
  "challenges": ["...", "..."],
113
  "potential_impact": "..."
114
+ }}}}
115
  ]
 
116
  Generate the JSON list of Key Issues based *only* on the provided context and user query. Ensure the output is a valid JSON list.
117
  """
118
  KEY_ISSUE_STRUCTURING_PROMPT = ChatPromptTemplate.from_template(KEY_ISSUE_STRUCTURING_TEMPLATE)
119
 
 
120
  # --- Initial Prompt Selection ---
121
  def get_initial_planner_prompt(plan_method: str, user_query: str) -> ChatPromptTemplate:
122
  if plan_method == "generation":