Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
halfcheetah_sqil_config = dict( | |
exp_name='halfcheetah_sqil_sac_seed0', | |
env=dict( | |
env_id='HalfCheetah-v3', | |
norm_obs=dict(use_norm=False, ), | |
norm_reward=dict(use_norm=False, ), | |
collector_env_num=1, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=12000, | |
), | |
policy=dict( | |
cuda=True, | |
random_collect_size=10000, | |
expert_random_collect_size=10000, | |
model=dict( | |
obs_shape=17, | |
action_shape=6, | |
twin_critic=True, | |
action_space='reparameterization', | |
actor_head_hidden_size=256, | |
critic_head_hidden_size=256, | |
), | |
nstep=1, | |
discount_factor=0.97, | |
learn=dict( | |
update_per_collect=1, | |
batch_size=256, | |
learning_rate_q=1e-3, | |
learning_rate_policy=1e-3, | |
learning_rate_alpha=2e-4, | |
ignore_done=True, | |
target_theta=0.005, | |
discount_factor=0.99, | |
alpha=0.2, | |
reparameterization=True, | |
auto_alpha=True, | |
), | |
collect=dict( | |
n_sample=32, | |
# Users should add their own path here (path should lead to a well-trained model) | |
model_path='model_path_placeholder', | |
# Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
eval=dict(evaluator=dict(eval_freq=500, )), # note: this is the times after which you learns to evaluate | |
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), | |
), | |
) | |
halfcheetah_sqil_config = EasyDict(halfcheetah_sqil_config) | |
main_config = halfcheetah_sqil_config | |
halfcheetah_sqil_create_config = dict( | |
env=dict( | |
type='mujoco', | |
import_names=['dizoo.mujoco.envs.mujoco_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='sqil_sac'), | |
replay_buffer=dict(type='naive', ), | |
) | |
halfcheetah_sqil_create_config = EasyDict(halfcheetah_sqil_create_config) | |
create_config = halfcheetah_sqil_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_sqil -c halfcheetah_sqil_sac_config.py -s 0` | |
# then input the config you used to generate your expert model in the path mentioned above | |
# e.g. halfcheetah_sac_config.py | |
from halfcheetah_sac_config import halfcheetah_sac_config, halfcheetah_sac_create_config | |
from ding.entry import serial_pipeline_sqil | |
expert_main_config = halfcheetah_sac_config | |
expert_create_config = halfcheetah_sac_create_config | |
serial_pipeline_sqil( | |
[main_config, create_config], [expert_main_config, expert_create_config], seed=0, max_env_step=5000000 | |
) | |