Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
obs_shape = 111 | |
act_shape = 8 | |
ant_sac_gail_config = dict( | |
exp_name='ant_sac_gail_seed0', | |
env=dict( | |
env_id='Ant-v3', | |
norm_obs=dict(use_norm=False, ), | |
norm_reward=dict(use_norm=False, ), | |
collector_env_num=1, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=6000, | |
), | |
reward_model=dict( | |
input_size=obs_shape + act_shape, | |
hidden_size=256, | |
batch_size=64, | |
learning_rate=1e-3, | |
update_per_collect=100, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
expert_model_path='model_path_placeholder', | |
# Path where to store the reward model | |
reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar', | |
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data. | |
# Absolute path is recommended. | |
# In DI-engine, it is usually located in ``exp_name`` directory | |
data_path='data_path_placeholder', | |
collect_count=300000, | |
), | |
policy=dict( | |
cuda=True, | |
random_collect_size=25000, | |
model=dict( | |
obs_shape=obs_shape, | |
action_shape=act_shape, | |
twin_critic=True, | |
action_space='reparameterization', | |
actor_head_hidden_size=256, | |
critic_head_hidden_size=256, | |
), | |
learn=dict( | |
update_per_collect=1, | |
batch_size=256, | |
learning_rate_q=1e-3, | |
learning_rate_policy=1e-3, | |
learning_rate_alpha=3e-4, | |
ignore_done=False, | |
target_theta=0.005, | |
discount_factor=0.99, | |
alpha=0.2, | |
reparameterization=True, | |
auto_alpha=False, | |
), | |
collect=dict( | |
n_sample=64, | |
unroll_len=1, | |
), | |
command=dict(), | |
eval=dict(), | |
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), | |
), | |
) | |
ant_sac_gail_config = EasyDict(ant_sac_gail_config) | |
main_config = ant_sac_gail_config | |
ant_sac_gail_create_config = dict( | |
env=dict( | |
type='mujoco', | |
import_names=['dizoo.mujoco.envs.mujoco_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='sac', | |
import_names=['ding.policy.sac'], | |
), | |
replay_buffer=dict(type='naive', ), | |
reward_model=dict(type='gail'), | |
) | |
ant_sac_gail_create_config = EasyDict(ant_sac_gail_create_config) | |
create_config = ant_sac_gail_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial_gail -c ant_gail_sac_config.py -s 0` | |
# then input the config you used to generate your expert model in the path mentioned above | |
# e.g. hopper_sac_config.py | |
from ding.entry import serial_pipeline_gail | |
from dizoo.mujoco.config.ant_sac_config import ant_sac_config, ant_sac_create_config | |
expert_main_config = ant_sac_config | |
expert_create_config = ant_sac_create_config | |
serial_pipeline_gail( | |
[main_config, create_config], [expert_main_config, expert_create_config], | |
max_env_step=10000000, | |
seed=0, | |
collect_data=True | |
) | |