Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
qbert_a2c_config = dict( | |
exp_name='qbert_a2c_seed0', | |
env=dict( | |
collector_env_num=16, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=1000000, | |
env_id='QbertNoFrameskip-v4', | |
#'ALE/Qbert-v5' is available. But special setting is needed after gym make. | |
frame_stack=4 | |
), | |
policy=dict( | |
cuda=True, | |
model=dict( | |
obs_shape=[4, 84, 84], | |
action_shape=6, | |
encoder_hidden_size_list=[32, 64, 64, 256], | |
actor_head_hidden_size=256, | |
critic_head_hidden_size=256, | |
critic_head_layer_num=2, | |
), | |
learn=dict( | |
batch_size=300, | |
# (bool) Whether to normalize advantage. Default to False. | |
adv_norm=False, | |
learning_rate=0.0001414, | |
# (float) loss weight of the value network, the weight of policy network is set to 1 | |
value_weight=0.5, | |
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1 | |
entropy_weight=0.01, | |
grad_norm=0.5, | |
betas=(0.0, 0.99), | |
), | |
collect=dict( | |
# (int) collect n_sample data, train model 1 times | |
n_sample=160, | |
# (float) the trade-off factor lambda to balance 1step td and mc | |
gae_lambda=0.99, | |
discount_factor=0.99, | |
), | |
eval=dict(evaluator=dict(eval_freq=500, )), | |
), | |
) | |
main_config = EasyDict(qbert_a2c_config) | |
qbert_a2c_create_config = dict( | |
env=dict( | |
type='atari', | |
import_names=['dizoo.atari.envs.atari_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='a2c'), | |
replay_buffer=dict(type='naive'), | |
) | |
create_config = EasyDict(qbert_a2c_create_config) | |
if __name__ == '__main__': | |
# or you can enter ding -m serial_onpolicy -c qbert_a2c_config.py -s 0 | |
from ding.entry import serial_pipeline_onpolicy | |
serial_pipeline_onpolicy((main_config, create_config), seed=0) | |