Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
pong_cql_config = dict( | |
exp_name='pong_cql_seed0', | |
env=dict( | |
collector_env_num=8, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=20, | |
env_id='PongNoFrameskip-v4', | |
#'ALE/Pong-v5' is available. But special setting is needed after gym make. | |
frame_stack=4, | |
), | |
policy=dict( | |
cuda=True, | |
priority=False, | |
model=dict( | |
obs_shape=[4, 84, 84], | |
action_shape=6, | |
encoder_hidden_size_list=[128, 128, 512], | |
num_quantiles=200, | |
), | |
nstep=1, | |
discount_factor=0.99, | |
learn=dict( | |
train_epoch=30000, | |
batch_size=32, | |
learning_rate=0.00005, | |
target_update_freq=2000, | |
min_q_weight=10.0, | |
), | |
collect=dict( | |
n_sample=100, | |
data_type='hdf5', | |
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data. | |
# Absolute path is recommended. | |
# In DI-engine, it is usually located in ``exp_name`` directory | |
data_path='./default_experiment/expert.pkl', | |
), | |
eval=dict(evaluator=dict(eval_freq=4000, )), | |
other=dict( | |
eps=dict( | |
type='exp', | |
start=1., | |
end=0.05, | |
decay=250000, | |
), | |
replay_buffer=dict(replay_buffer_size=100000, ), | |
), | |
), | |
) | |
pong_cql_config = EasyDict(pong_cql_config) | |
main_config = pong_cql_config | |
pong_cql_create_config = dict( | |
env=dict( | |
type='atari', | |
import_names=['dizoo.atari.envs.atari_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='cql_discrete'), | |
) | |
pong_cql_create_config = EasyDict(pong_cql_create_config) | |
create_config = pong_cql_create_config | |
if __name__ == '__main__': | |
# or you can enter `ding -m serial_offline -c pong_cql_config.py -s 0` | |
from ding.entry import serial_pipeline_offline | |
serial_pipeline_offline((main_config, create_config), seed=0) | |