Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
import torch | |
import copy | |
from ding.torch_utils import Adam, to_device | |
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_train_sample, get_nstep_return_data | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate, default_decollate | |
from .dqn import DQNPolicy | |
from .common_utils import default_preprocess_learn | |
class RainbowDQNPolicy(DQNPolicy): | |
r""" | |
Overview: | |
Rainbow DQN contain several improvements upon DQN, including: | |
- target network | |
- dueling architecture | |
- prioritized experience replay | |
- n_step return | |
- noise net | |
- distribution net | |
Therefore, the RainbowDQNPolicy class inherit upon DQNPolicy class | |
Config: | |
== ==================== ======== ============== ======================================== ======================= | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ======== ============== ======================================== ======================= | |
1 ``type`` str rainbow | RL policy register name, refer to | this arg is optional, | |
| registry ``POLICY_REGISTRY`` | a placeholder | |
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| erent from modes | |
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| or off-policy | |
4 ``priority`` bool True | Whether use priority(PER) | priority sample, | |
| update priority | |
5 ``model.v_min`` float -10 | Value of the smallest atom | |
| in the support set. | |
6 ``model.v_max`` float 10 | Value of the largest atom | |
| in the support set. | |
7 ``model.n_atom`` int 51 | Number of atoms in the support set | |
| of the value distribution. | |
8 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's | |
| ``.start`` | small because rainbow use noisy net. | |
9 | ``other.eps`` float 0.05 | End value for epsilon decay. | |
| ``.end`` | |
10 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse | |
| ``factor`` [0.95, 0.999] | gamma | reward env | |
11 ``nstep`` int 3, | N-step reward discount sum for target | |
[3, 5] | q_value estimation | |
12 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary | |
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| valid in serial training | means more off-policy | |
== ==================== ======== ============== ======================================== ======================= | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='rainbow', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. | |
on_policy=False, | |
# (bool) Whether use priority(priority sample, IS weight, update priority) | |
priority=True, | |
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
priority_IS_weight=True, | |
# (int) Number of training samples(randomly collected) in replay buffer when training starts. | |
# random_collect_size=2000, | |
model=dict( | |
# (float) Value of the smallest atom in the support set. | |
# Default to -10.0. | |
v_min=-10, | |
# (float) Value of the smallest atom in the support set. | |
# Default to 10.0. | |
v_max=10, | |
# (int) Number of atoms in the support set of the | |
# value distribution. Default to 51. | |
n_atom=51, | |
), | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# (int) N-step reward for target q_value estimation | |
nstep=3, | |
learn=dict( | |
# How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=1, | |
batch_size=32, | |
learning_rate=0.001, | |
# ============================================================== | |
# The following configs are algorithm-specific | |
# ============================================================== | |
# (int) Frequence of target network update. | |
target_update_freq=100, | |
# (bool) Whether ignore done(usually for max step termination env) | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) Only one of [n_sample, n_episode] shoule be set | |
# n_sample=32, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
eval=dict(), | |
# other config | |
other=dict( | |
# Epsilon greedy with decay. | |
eps=dict( | |
# (str) Decay type. Support ['exp', 'linear']. | |
type='exp', | |
# (float) End value for epsilon decay, in [0, 1]. It's equals to `end` because rainbow uses noisy net. | |
start=0.05, | |
# (float) End value for epsilon decay, in [0, 1]. | |
end=0.05, | |
# (int) Env steps of epsilon decay. | |
decay=100000, | |
), | |
replay_buffer=dict( | |
# (int) Max size of replay buffer. | |
replay_buffer_size=100000, | |
# (float) Prioritization exponent. | |
alpha=0.6, | |
# (float) Importance sample soft coefficient. | |
# 0 means no correction, while 1 means full correction | |
beta=0.4, | |
# (int) Anneal step for beta: 0 means no annealing. Defaults to 0 | |
anneal_step=100000, | |
) | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
return 'rainbowdqn', ['ding.model.template.q_learning'] | |
def _init_learn(self) -> None: | |
r""" | |
Overview: | |
Init the learner model of RainbowDQNPolicy | |
Arguments: | |
- learning_rate (:obj:`float`): the learning rate fo the optimizer | |
- gamma (:obj:`float`): the discount factor | |
- nstep (:obj:`int`): the num of n step return | |
- v_min (:obj:`float`): value distribution minimum value | |
- v_max (:obj:`float`): value distribution maximum value | |
- n_atom (:obj:`int`): the number of atom sample point | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
self._gamma = self._cfg.discount_factor | |
self._nstep = self._cfg.nstep | |
self._v_max = self._cfg.model.v_max | |
self._v_min = self._cfg.model.v_min | |
self._n_atom = self._cfg.model.n_atom | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='assign', | |
update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._learn_model.reset() | |
self._target_model.reset() | |
def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
""" | |
Overview: | |
Forward and backward function of learn mode, acquire the data and calculate the loss and\ | |
optimize learner model | |
Arguments: | |
- data (:obj:`dict`): Dict type data, including at least ['obs', 'next_obs', 'reward', 'action'] | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss | |
- cur_lr (:obj:`float`): current learning rate | |
- total_loss (:obj:`float`): the calculated loss | |
""" | |
data = default_preprocess_learn( | |
data, | |
use_priority=self._priority, | |
use_priority_IS_weight=self._cfg.priority_IS_weight, | |
ignore_done=self._cfg.learn.ignore_done, | |
use_nstep=True | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
# ==================== | |
# Rainbow forward | |
# ==================== | |
self._learn_model.train() | |
self._target_model.train() | |
# reset noise of noisenet for both main model and target model | |
self._reset_noise(self._learn_model) | |
self._reset_noise(self._target_model) | |
q_dist = self._learn_model.forward(data['obs'])['distribution'] | |
with torch.no_grad(): | |
target_q_dist = self._target_model.forward(data['next_obs'])['distribution'] | |
self._reset_noise(self._learn_model) | |
target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
value_gamma = data.get('value_gamma', None) | |
data = dist_nstep_td_data( | |
q_dist, target_q_dist, data['action'], target_q_action, data['reward'], data['done'], data['weight'] | |
) | |
loss, td_error_per_sample = dist_nstep_td_error( | |
data, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma | |
) | |
# ==================== | |
# Rainbow update | |
# ==================== | |
self._optimizer.zero_grad() | |
loss.backward() | |
self._optimizer.step() | |
# ============= | |
# after update | |
# ============= | |
self._target_model.update(self._learn_model.state_dict()) | |
return { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': loss.item(), | |
'priority': td_error_per_sample.abs().tolist(), | |
} | |
def _init_collect(self) -> None: | |
r""" | |
Overview: | |
Collect mode init moethod. Called by ``self.__init__``. | |
Init traj and unroll length, collect model. | |
.. note:: | |
the rainbow dqn enable the eps_greedy_sample, but might not need to use it, \ | |
as the noise_net contain noise that can help exploration | |
""" | |
self._unroll_len = self._cfg.collect.unroll_len | |
self._nstep = self._cfg.nstep | |
self._gamma = self._cfg.discount_factor | |
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') | |
self._collect_model.reset() | |
def _forward_collect(self, data: dict, eps: float) -> dict: | |
r""" | |
Overview: | |
Reset the noise from noise net and collect output according to eps_greedy plugin | |
Arguments: | |
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. | |
ReturnsKeys | |
- necessary: ``action`` | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
self._reset_noise(self._collect_model) | |
with torch.no_grad(): | |
output = self._collect_model.forward(data, eps=eps) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _get_train_sample(self, traj: list) -> Union[None, List[Any]]: | |
r""" | |
Overview: | |
Get the trajectory and the n step return data, then sample from the n_step return data | |
Arguments: | |
- traj (:obj:`list`): The trajactory's buffer list | |
Returns: | |
- samples (:obj:`dict`): The training samples generated | |
""" | |
data = get_nstep_return_data(traj, self._nstep, gamma=self._gamma) | |
return get_train_sample(data, self._unroll_len) | |
def _reset_noise(self, model: torch.nn.Module): | |
r""" | |
Overview: | |
Reset the noise of model | |
Arguments: | |
- model (:obj:`torch.nn.Module`): the model to reset, must contain reset_noise method | |
""" | |
for m in model.modules(): | |
if hasattr(m, 'reset_noise'): | |
m.reset_noise() | |