zjowowen's picture
init space
3dfe8fb
raw
history blame contribute delete
26.5 kB
import copy
from collections import namedtuple
from typing import List, Dict, Any, Tuple, Union, Optional
import torch
from ding.model import model_wrap
from ding.rl_utils import q_nstep_td_error_with_rescale, get_nstep_return_data, \
get_train_sample, dqfd_nstep_td_error, dqfd_nstep_td_error_with_rescale, dqfd_nstep_td_data
from ding.torch_utils import Adam, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy
@POLICY_REGISTRY.register('r2d3')
class R2D3Policy(Policy):
r"""
Overview:
Policy class of r2d3, from paper `Making Efficient Use of Demonstrations to Solve Hard Exploration Problems` .
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool False | Whether use priority(PER) | Priority sample,
| update priority
5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight
| ``_weight`` | to correct biased update. If True,
| priority must be True.
6 | ``discount_`` float 0.997, | Reward's future discount factor, aka. | May be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
7 ``nstep`` int 3, | N-step reward discount sum for target
[3, 5] | q_value estimation
8 ``burnin_step`` int 2 | The timestep of burnin operation,
| which is designed to RNN hidden state
| difference caused by off-policy
9 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
10 | ``learn.batch_`` int 64 | The number of samples of an iteration
| ``size``
11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration.
| ``_rate``
12 | ``learn.value_`` bool True | Whether use value_rescale function for
| ``rescale`` | predicted value
13 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update
| ``update_freq``
14 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some
| ``done`` | calculation. | fake termination env
15 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from
| call of collector. | different envs
16 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1
| ``_len``
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='r2d3',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.997,
# (int) N-step reward for target q_value estimation
nstep=5,
# (int) the timestep of burnin operation, which is designed to RNN hidden state difference
# caused by off-policy
burnin_step=2,
# (int) the trajectory length to unroll the RNN network minus
# the timestep of burnin operation
learn_unroll_len=80,
learn=dict(
update_per_collect=1,
batch_size=64,
learning_rate=0.0001,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
# target_update_freq=100,
target_update_theta=0.001,
# (bool) whether use value_rescale function for predicted value
value_rescale=True,
ignore_done=False,
),
collect=dict(
# NOTE it is important that don't include key n_sample here, to make sure self._traj_len=INF
# each_iter_n_sample=32,
# `env_num` is used in hidden state, should equal to that one in env config.
# User should specify this value in user config.
env_num=None,
),
eval=dict(
# `env_num` is used in hidden state, should equal to that one in env config.
# User should specify this value in user config.
env_num=None,
),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.05,
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, ),
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'drqn', ['ding.model.template.q_learning']
def _init_learn(self) -> None:
r"""
Overview:
Init the learner model of r2d3Policy
Arguments:
.. note::
The _init_learn method takes the argument from the self._cfg.learn in the config file
- learning_rate (:obj:`float`): The learning rate fo the optimizer
- gamma (:obj:`float`): The discount factor
- nstep (:obj:`int`): The num of n step return
- value_rescale (:obj:`bool`): Whether to use value rescaled loss in algorithm
- burnin_step (:obj:`int`): The num of step of burnin
"""
self.lambda1 = self._cfg.learn.lambda1 # n-step return
self.lambda2 = self._cfg.learn.lambda2 # supervised loss
self.lambda3 = self._cfg.learn.lambda3 # L2
self.lambda_one_step_td = self._cfg.learn.lambda_one_step_td # 1-step return
# margin function in JE, here we implement this as a constant
self.margin_function = self._cfg.learn.margin_function
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._optimizer = Adam(
self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3, optim_type='adamw'
)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
self._burnin_step = self._cfg.burnin_step
self._value_rescale = self._cfg.learn.value_rescale
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_update_theta}
)
self._target_model = model_wrap(
self._target_model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
)
self._learn_model = model_wrap(
self._model,
wrapper_name='hidden_state',
state_num=self._cfg.learn.batch_size,
)
self._learn_model = model_wrap(self._learn_model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> dict:
r"""
Overview:
Preprocess the data to fit the required data format for learning
Arguments:
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
Returns:
- data (:obj:`Dict[str, Any]`): the processed data, including at least \
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
- data_info (:obj:`dict`): the data info, such as replay_buffer_idx, replay_unique_id
"""
# data preprocess
data = timestep_collate(data)
if self._cuda:
data = to_device(data, self._device)
if self._priority_IS_weight:
assert self._priority, "Use IS Weight correction, but Priority is not used."
if self._priority and self._priority_IS_weight:
data['weight'] = data['IS']
else:
data['weight'] = data.get('weight', None)
bs = self._burnin_step
# data['done'], data['weight'], data['value_gamma'] is used in def _forward_learn() to calculate
# the q_nstep_td_error, should be length of [self._sequence_len-self._burnin_step-self._nstep]
ignore_done = self._cfg.learn.ignore_done
if ignore_done:
data['done'] = [None for _ in range(self._sequence_len - bs)]
else:
data['done'] = data['done'][bs:].float()
# NOTE that after the proprocessing of get_nstep_return_data() in _get_train_sample
# the data['done'] [t] is already the n-step done
# if the data don't include 'weight' or 'value_gamma' then fill in None in a list
# with length of [self._sequence_len-self._burnin_step-self._nstep],
# below is two different implementation ways
if 'value_gamma' not in data:
data['value_gamma'] = [None for _ in range(self._sequence_len - bs)]
else:
data['value_gamma'] = data['value_gamma'][bs:]
if 'weight' not in data:
data['weight'] = [None for _ in range(self._sequence_len - bs)]
else:
data['weight'] = data['weight'] * torch.ones_like(data['done'])
# every timestep in sequence has same weight, which is the _priority_IS_weight in PER
data['action'] = data['action'][bs:-self._nstep]
data['reward'] = data['reward'][bs:-self._nstep]
# the burnin_nstep_obs is used to calculate the init hidden state of rnn for the calculation of the q_value,
# target_q_value, and target_q_action
data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep]
# the main_obs is used to calculate the q_value, the [bs:-self._nstep] means using the data from
# [bs] timestep to [self._sequence_len-self._nstep] timestep
data['main_obs'] = data['obs'][bs:-self._nstep]
# the target_obs is used to calculate the target_q_value
data['target_obs'] = data['obs'][bs + self._nstep:]
# TODO(pu)
data['target_obs_one_step'] = data['obs'][bs + 1:]
if ignore_done:
data['done_one_step'] = [None for _ in range(self._sequence_len - bs)]
else:
data['done_one_step'] = data['done_one_step'][bs:].float()
return data
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Acquire the data, calculate the loss and optimize learner model.
Arguments:
- data (:obj:`dict`): Dict type data, including at least \
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss
- cur_lr (:obj:`float`): Current learning rate
- total_loss (:obj:`float`): The calculated loss
"""
# forward
data = self._data_preprocess_learn(data)
self._learn_model.train()
self._target_model.train()
# take out the hidden state in timestep=0
self._learn_model.reset(data_id=None, state=data['prev_state'][0])
self._target_model.reset(data_id=None, state=data['prev_state'][0])
if len(data['burnin_nstep_obs']) != 0:
with torch.no_grad():
inputs = {'obs': data['burnin_nstep_obs'], 'enable_fast_timestep': True}
burnin_output = self._learn_model.forward(
inputs,
saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep, self._burnin_step + 1]
)
burnin_output_target = self._target_model.forward(
inputs,
saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep, self._burnin_step + 1]
)
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][0])
inputs = {'obs': data['main_obs'], 'enable_fast_timestep': True}
q_value = self._learn_model.forward(inputs)['logit']
# n-step
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][1])
self._target_model.reset(data_id=None, state=burnin_output_target['saved_state'][1])
next_inputs = {'obs': data['target_obs'], 'enable_fast_timestep': True}
with torch.no_grad():
target_q_value = self._target_model.forward(next_inputs)['logit']
# argmax_action double_dqn
target_q_action = self._learn_model.forward(next_inputs)['action']
# one-step
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][2])
self._target_model.reset(data_id=None, state=burnin_output_target['saved_state'][2])
next_inputs_one_step = {'obs': data['target_obs_one_step'], 'enable_fast_timestep': True}
with torch.no_grad():
target_q_value_one_step = self._target_model.forward(next_inputs_one_step)['logit']
# argmax_action double_dqn
target_q_action_one_step = self._learn_model.forward(next_inputs_one_step)['action']
action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight']
value_gamma = data['value_gamma']
done_one_step = data['done_one_step']
# T, B, nstep -> T, nstep, B
reward = reward.permute(0, 2, 1).contiguous()
loss = []
loss_nstep = []
loss_1step = []
loss_sl = []
td_error = []
for t in range(self._sequence_len - self._burnin_step - self._nstep):
# here t=0 means timestep <self._burnin_step> in the original sample sequence, we minus self._nstep
# because for the last <self._nstep> timestep in the sequence, we don't have their target obs
td_data = dqfd_nstep_td_data(
q_value[t],
target_q_value[t],
action[t],
target_q_action[t],
reward[t],
done[t],
done_one_step[t],
weight[t],
target_q_value_one_step[t],
target_q_action_one_step[t],
data['is_expert'][t], # is_expert flag(expert 1, agent 0)
)
if self._value_rescale:
l, e, loss_statistics = dqfd_nstep_td_error_with_rescale(
td_data,
self._gamma,
self.lambda1,
self.lambda2,
self.margin_function,
self.lambda_one_step_td,
self._nstep,
False,
value_gamma=value_gamma[t],
)
loss.append(l)
# td_error.append(e.abs()) # first sum then abs
td_error.append(e) # first abs then sum
# loss statistics for debugging
loss_nstep.append(loss_statistics[0])
loss_1step.append(loss_statistics[1])
loss_sl.append(loss_statistics[2])
else:
l, e, loss_statistics = dqfd_nstep_td_error(
td_data,
self._gamma,
self.lambda1,
self.lambda2,
self.margin_function,
self.lambda_one_step_td,
self._nstep,
False,
value_gamma=value_gamma[t],
)
loss.append(l)
# td_error.append(e.abs()) # first sum then abs
td_error.append(e) # first abs then sum
# loss statistics for debugging
loss_nstep.append(loss_statistics[0])
loss_1step.append(loss_statistics[1])
loss_sl.append(loss_statistics[2])
loss = sum(loss) / (len(loss) + 1e-8)
# loss statistics for debugging
loss_nstep = sum(loss_nstep) / (len(loss_nstep) + 1e-8)
loss_1step = sum(loss_1step) / (len(loss_1step) + 1e-8)
loss_sl = sum(loss_sl) / (len(loss_sl) + 1e-8)
# using the mixture of max and mean absolute n-step TD-errors as the priority of the sequence
td_error_per_sample = 0.9 * torch.max(
torch.stack(td_error), dim=0
)[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8))
# td_error shape list(<self._sequence_len-self._burnin_step-self._nstep>, B), for example, (75,64)
# torch.sum(torch.stack(td_error), dim=0) can also be replaced with sum(td_error)
# update
self._optimizer.zero_grad()
loss.backward()
self._optimizer.step()
# after update
self._target_model.update(self._learn_model.state_dict())
# the information for debug
batch_range = torch.arange(action[0].shape[0])
q_s_a_t0 = q_value[0][batch_range, action[0]]
target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]]
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
# loss statistics for debugging
'nstep_loss': loss_nstep.item(),
'1step_loss': loss_1step.item(),
'sl_loss': loss_sl.item(),
'priority': td_error_per_sample.abs().tolist(),
# the first timestep in the sequence, may not be the start of episode
'q_s_taken-a_t0': q_s_a_t0.mean().item(),
'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(),
'q_s_a-mean_t0': q_value[0].mean().item(),
}
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
self._learn_model.reset(data_id=data_id)
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
assert 'unroll_len' not in self._cfg.collect, "r2d3 use default unroll_len"
self._nstep = self._cfg.nstep
self._burnin_step = self._cfg.burnin_step
self._gamma = self._cfg.discount_factor
self._sequence_len = self._cfg.learn_unroll_len + self._cfg.burnin_step
self._unroll_len = self._sequence_len # for compatibility
self._collect_model = model_wrap(
self._model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True
)
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
self._collect_model.reset()
def _forward_collect(self, data: dict, eps: float) -> dict:
r"""
Overview:
Collect output according to eps_greedy plugin
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs'].
Returns:
- data (:obj:`dict`): The collected data
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._collect_model.eval()
with torch.no_grad():
# in collect phase, inference=True means that each time we only pass one timestep data,
# so the we can get the hidden state of rnn: <prev_state> at each timestep.
output = self._collect_model.forward(data, data_id=data_id, eps=eps, inference=True)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
self._collect_model.reset(data_id=data_id)
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['reward', 'done'] \
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'action': model_output['action'],
'prev_state': model_output['prev_state'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and the n step return data, then sample from the n_step return data
Arguments:
- data (:obj:`list`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
from copy import deepcopy
data_one_step = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma))
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
for i in range(len(data)):
# here we record the one-step done, we don't need record one-step reward,
# because the n-step reward in data already include one-step reward
data[i]['done_one_step'] = data_one_step[i]['done']
return get_train_sample(data, self._sequence_len)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num)
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs'].
Returns:
- output (:obj:`dict`): Dict type data, including at least inferred action according to input obs.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
data = {'obs': data}
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, data_id=data_id, inference=True)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
self._eval_model.reset(data_id=data_id)
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + [
'total_loss', 'nstep_loss', '1step_loss', 'sl_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0',
'q_s_a-mean_t0'
]