gomoku / DI-engine /ding /policy /r2d2_gtrxl.py
zjowowen's picture
init space
3dfe8fb
raw
history blame contribute delete
24.1 kB
import copy
import torch
from collections import namedtuple
from typing import List, Dict, Any, Tuple, Union, Optional
from ding.model import model_wrap
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, q_nstep_td_error_with_rescale, get_nstep_return_data, \
get_train_sample
from ding.torch_utils import Adam, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy
@POLICY_REGISTRY.register('r2d2_gtrxl')
class R2D2GTrXLPolicy(Policy):
r"""
Overview:
Policy class of R2D2 adopting the Transformer architecture GTrXL as backbone.
Config:
== ==================== ======== ============== ======================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============== ======================================== =======================
1 ``type`` str r2d2_gtrxl | RL policy register name, refer to | This arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff-
| erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy
| or off-policy
4 ``priority`` bool False | Whether use priority(PER) | Priority sample,
| update priority
5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight
| ``_weight`` | to correct biased update. If True,
| priority must be True.
6 | ``discount_`` float 0.99, | Reward's future discount factor, aka. | May be 1 when sparse
| ``factor`` [0.95, 0.999] | gamma | reward env
7 | ``nstep`` int 5, | N-step reward discount sum for target
[3, 5] | q_value estimation
8 | ``burnin_step`` int 1 | The timestep of burnin operation,
| which is designed to warm-up GTrXL
| memory difference caused by off-policy
9 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val
| valid in serial training | means more off-policy
10 | ``learn.batch_`` int 64 | The number of samples of an iteration
| ``size``
11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration.
| ``_rate``
12 | ``learn.value_`` bool True | Whether use value_rescale function for
| ``rescale`` | predicted value
13 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update
| ``update_freq``
14 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some
| ``done`` | calculation. | fake termination env
15 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from
| call of collector. | different envs
16 | ``collect.unroll`` int 25 | unroll length of an iteration | unroll_len>1
| ``_len``
17 | ``collect.seq`` int 20 | Training sequence length | unroll_len>=seq_len>1
| ``_len``
18 | ``learn.init_`` str zero | 'zero' or 'old', how to initialize the |
| ``memory`` | memory before each training iteration. |
== ==================== ======== ============== ======================================== =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='r2d2_gtrxl',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=True,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=True,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (int) N-step reward for target q_value estimation
nstep=5,
# how many steps to use as burnin
burnin_step=1,
# (int) trajectory length
unroll_len=25,
# (int) training sequence length
seq_len=20,
learn=dict(
update_per_collect=1,
batch_size=64,
learning_rate=0.0001,
# ==============================================================
# The following configs are algorithm-specific
# ==============================================================
# (int) Frequence of target network update.
# target_update_freq=100,
target_update_theta=0.001,
ignore_done=False,
# (bool) whether use value_rescale function for predicted value
value_rescale=False,
# 'zero' or 'old', how to initialize the memory in training
init_memory='zero'
),
collect=dict(
# NOTE it is important that don't include key n_sample here, to make sure self._traj_len=INF
each_iter_n_sample=32,
# `env_num` is used in hidden state, should equal to that one in env config.
# User should specify this value in user config.
env_num=None,
),
eval=dict(
# `env_num` is used in hidden state, should equal to that one in env config.
# User should specify this value in user config.
env_num=None,
),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.05,
decay=10000,
),
replay_buffer=dict(replay_buffer_size=10000, ),
),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'gtrxldqn', ['ding.model.template.q_learning']
def _init_learn(self) -> None:
"""
Overview:
Init the learner model of GTrXLR2D2Policy. \
Target model has 2 wrappers: 'target' for weights update and 'transformer_segment' to split trajectories \
in segments. Learn model has 2 wrappers: 'argmax' to select the best action and 'transformer_segment'.
Arguments:
- learning_rate (:obj:`float`): The learning rate fo the optimizer
- gamma (:obj:`float`): The discount factor
- nstep (:obj:`int`): The num of n step return
- value_rescale (:obj:`bool`): Whether to use value rescaled loss in algorithm
- burnin_step (:obj:`int`): The num of step of burnin
- seq_len (:obj:`int`): Training sequence length
- init_memory (:obj:`str`): 'zero' or 'old', how to initialize the memory before each training iteration.
.. note::
The ``_init_learn`` method takes the argument from the self._cfg.learn in the config file
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
self._burnin_step = self._cfg.burnin_step
self._batch_size = self._cfg.learn.batch_size
self._seq_len = self._cfg.seq_len
self._value_rescale = self._cfg.learn.value_rescale
self._init_memory = self._cfg.learn.init_memory
assert self._init_memory in ['zero', 'old']
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_update_theta}
)
self._target_model = model_wrap(self._target_model, seq_len=self._seq_len, wrapper_name='transformer_segment')
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model = model_wrap(self._learn_model, seq_len=self._seq_len, wrapper_name='transformer_segment')
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> dict:
r"""
Overview:
Preprocess the data to fit the required data format for learning
Arguments:
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function
Returns:
- data (:obj:`Dict[str, Any]`): the processed data, including at least \
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
- data_info (:obj:`dict`): the data info, such as replay_buffer_idx, replay_unique_id
"""
if self._init_memory == 'old' and 'prev_memory' in data[0].keys():
# retrieve the memory corresponding to the first and n_step(th) element in each trajectory and remove it
# from 'data'
prev_mem = [b['prev_memory'][0] for b in data]
prev_mem_target = [b['prev_memory'][self._nstep] for b in data]
# stack the memory entries along the batch dimension,
# reshape the new memory to have shape (layer_num+1, memory_len, bs, embedding_dim) compatible with GTrXL
prev_mem_batch = torch.stack(prev_mem, 0).permute(1, 2, 0, 3)
prev_mem_target_batch = torch.stack(prev_mem_target, 0).permute(1, 2, 0, 3)
data = timestep_collate(data)
data['prev_memory_batch'] = prev_mem_batch
data['prev_memory_target_batch'] = prev_mem_target_batch
else:
data = timestep_collate(data)
if self._cuda:
data = to_device(data, self._device)
if self._priority_IS_weight:
assert self._priority, "Use IS Weight correction, but Priority is not used."
if self._priority and self._priority_IS_weight:
data['weight'] = data['IS']
else:
data['weight'] = data.get('weight', None)
# data['done'], data['weight'], data['value_gamma'] is used in def _forward_learn() to calculate
# the q_nstep_td_error, should be length of [self._unroll_len]
ignore_done = self._cfg.learn.ignore_done
if ignore_done:
data['done'] = [None for _ in range(self._unroll_len)]
else:
data['done'] = data['done'].float() # for computation of online model self._learn_model
# NOTE that after the proprocessing of get_nstep_return_data() in _get_train_sample
# the data['done'][t] is already the n-step done
# if the data don't include 'weight' or 'value_gamma' then fill in None in a list
# with length of [self._unroll_len_add_burnin_step-self._burnin_step],
# below is two different implementation ways
if 'value_gamma' not in data:
data['value_gamma'] = [None for _ in range(self._unroll_len)]
else:
data['value_gamma'] = data['value_gamma']
if 'weight' not in data or data['weight'] is None:
data['weight'] = [None for _ in range(self._unroll_len)]
else:
data['weight'] = data['weight'] * torch.ones_like(data['done'])
# every timestep in sequence has same weight, which is the _priority_IS_weight in PER
data['action'] = data['action'][:-self._nstep]
data['reward'] = data['reward'][:-self._nstep]
data['main_obs'] = data['obs'][:-self._nstep]
# the target_obs is used to calculate the target_q_value
data['target_obs'] = data['obs'][self._nstep:]
return data
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Acquire the data, calculate the loss and optimize learner model.
Arguments:
- data (:obj:`dict`): Dict type data, including at least \
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss
- cur_lr (:obj:`float`): Current learning rate
- total_loss (:obj:`float`): The calculated loss
"""
data = self._data_preprocess_learn(data) # shape (seq_len, bs, obs_dim)
self._learn_model.train()
self._target_model.train()
if self._init_memory == 'old':
# use the previous hidden state memory
self._learn_model.reset_memory(state=data['prev_memory_batch'])
self._target_model.reset_memory(state=data['prev_memory_target_batch'])
elif self._init_memory == 'zero':
# use the zero-initialized state memory
self._learn_model.reset_memory()
self._target_model.reset_memory()
inputs = data['main_obs']
q_value = self._learn_model.forward(inputs)['logit'] # shape (seq_len, bs, act_dim)
next_inputs = data['target_obs']
with torch.no_grad():
target_q_value = self._target_model.forward(next_inputs)['logit']
if self._init_memory == 'old':
self._learn_model.reset_memory(state=data['prev_memory_target_batch'])
elif self._init_memory == 'zero':
self._learn_model.reset_memory()
target_q_action = self._learn_model.forward(next_inputs)['action'] # argmax_action double_dqn
action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight']
value_gamma = data['value_gamma']
# T, B, nstep -> T, nstep, B
reward = reward.permute(0, 2, 1).contiguous()
loss = []
td_error = []
for t in range(self._burnin_step, self._unroll_len - self._nstep):
# here skip the first 'burnin_step' steps because we only needed that to initialize the memory, and
# skip the last 'nstep' steps because we don't have their target obs
td_data = q_nstep_td_data(
q_value[t], target_q_value[t], action[t], target_q_action[t], reward[t], done[t], weight[t]
)
if self._value_rescale:
l, e = q_nstep_td_error_with_rescale(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
else:
l, e = q_nstep_td_error(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
loss.append(l)
td_error.append(e.abs())
loss = sum(loss) / (len(loss) + 1e-8)
# using the mixture of max and mean absolute n-step TD-errors as the priority of the sequence
td_error_per_sample = 0.9 * torch.max(
torch.stack(td_error), dim=0
)[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8))
# td_error shape list(<self._unroll_len_add_burnin_step-self._burnin_step-self._nstep>, B), for example, (75,64)
# torch.sum(torch.stack(td_error), dim=0) can also be replaced with sum(td_error)
# update
self._optimizer.zero_grad()
loss.backward()
self._optimizer.step()
# after update
self._target_model.update(self._learn_model.state_dict())
# the information for debug
batch_range = torch.arange(action[0].shape[0])
q_s_a_t0 = q_value[0][batch_range, action[0]]
target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]]
ret = {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'priority': td_error_per_sample.abs().tolist(),
# the first timestep in the sequence, may not be the start of episode
'q_s_taken-a_t0': q_s_a_t0.mean().item(),
'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(),
'q_s_a-mean_t0': q_value[0].mean().item(),
}
return ret
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
self._learn_model.reset(data_id=data_id)
self._target_model.reset(data_id=data_id)
self._learn_model.reset_memory()
self._target_model.reset_memory()
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init unroll length and sequence len, collect model.
"""
assert 'unroll_len' not in self._cfg.collect, "Use default unroll_len"
self._nstep = self._cfg.nstep
self._gamma = self._cfg.discount_factor
self._unroll_len = self._cfg.unroll_len
self._seq_len = self._cfg.seq_len
self._collect_model = model_wrap(self._model, wrapper_name='transformer_input', seq_len=self._seq_len)
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
self._collect_model = model_wrap(
self._collect_model, wrapper_name='transformer_memory', batch_size=self.cfg.collect.env_num
)
self._collect_model.reset()
def _forward_collect(self, data: dict, eps: float) -> dict:
r"""
Overview:
Forward function for collect mode with eps_greedy
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, eps=eps, data_id=data_id)
del output['input_seq']
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
# data_id is ID of env to be reset
self._collect_model.reset(data_id=data_id)
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['reward', 'done'] \
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
transition = {
'obs': obs,
'action': model_output['action'],
'prev_memory': model_output['memory'], # state of the memory before taking the 'action'
'prev_state': None,
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and the n step return data, then sample from the n_step return data
Arguments:
- data (:obj:`list`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
self._seq_len = self._cfg.seq_len
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma)
return get_train_sample(data, self._unroll_len)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
self._eval_model = model_wrap(self._model, wrapper_name='transformer_input', seq_len=self._seq_len)
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
self._eval_model = model_wrap(
self._eval_model, wrapper_name='transformer_memory', batch_size=self.cfg.eval.env_num
)
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, data_id=data_id)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
self._eval_model.reset(data_id=data_id)
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + [
'total_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0', 'q_s_a-mean_t0'
]